簡易檢索 / 詳目顯示

研究生: 吳宗翰
Wu, Tzung-Han
論文名稱: 以有機金屬氣相沉積系統成長氮砷化銦鎵系列材料並應用於多接面太陽電池之研究
The investigation of InGaAsN material grown by MOVPE and its application on multi-junction solar cell
指導教授: 蘇炎坤
Su, Yan-kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 126
中文關鍵詞: 太陽電池氮砷化銦鎵有機金屬氣相沉積系統
外文關鍵詞: solar cells, InGaAsN, MOVPE
相關次數: 點閱:75下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在於研究有機金屬氣相沉積系統成長氮砷化銦鎵系列材料並應用於多接面太陽電池之研究;其中三五族三接面太陽能電池之轉換效率於2011年已創下超過40%之紀錄。而三五族太陽電池高轉換效率以及優越的抗輻射能力,使得其應用於外太空的酬載有很大的發展性。為了進一步提升傳統三接面太陽電池的效率,我們研究發展此種與鍺或砷化鎵晶格匹配且能隙接近1 eV的氮砷化銦鎵材料,該材料具有相當大的潛力可望作為下一個世代高效率太陽能電池的第四個接面,以提升整體轉換效率。從在砷化鎵基板上成長氮砷化銦鎵磊晶層開始,我們利用高解析X射線繞射儀分析成長材料之銦與氮的含量組成與能隙大小。為了使氮砷化銦鎵之吸收波長達到1240 nm並同時降低晶格常數的不匹配,必須調整TMIn/III與DMHy/VT之比例,進而控制銦與氮組成比例。藉由降低磊晶溫度、提升成長壓力與DMHy/VT比例可以提升原本較難溶入的氮原子組成比例。我們利用各個不同溫度下成長的未摻雜氮砷化銦鎵作為本質層以吸收太陽能頻譜中長波長的區段,製作雙異質接面p型砷化鎵/未摻雜氮砷化銦鎵/n型砷化鎵太陽能電池。進而以熱退火後處理改善氮砷化銦鎵材料特性,並以X射線光電子能譜分析氮砷化銦鎵退火前後之材料鍵結。量測元件效率顯示,經過退火處理之600°C成長氮砷化銦鎵磊晶層具有較佳的光電特性,太陽能電池轉換效率可到達4.46%。未來我們可嘗試著以氮砷化銦鎵太陽能電池作為第四個接面應用在磷化銦鎵/砷化鎵/1eV/鍺多接面太陽能電池元件結構中,更進一步地提升整體的效率。另外我們亦發展以砷化銦鎵/砷化鎵量子井結構延伸吸收波長,期望調整量子井組成而使得其吸收波長達到1eV,再將量子井結構置於本質層以形成p-i-n量子井太陽能電池。因此,我們可將量子井太陽能電池應用至磷化銦鎵/砷化鎵/1eV/鍺多接面太陽電池結構。而在有機氣相沉積系統磊晶過程中,可經由調整TMIn/III比例以及五三比來延伸吸收波長及改善磊晶品質;雖然增加TMIn/III比例有助於延伸吸收波段,但銦含量增加導致應力提升,因此量子井結晶品質和光特性變差,該問題可由增加五三比來改善。而後成長銦含量22%之砷化銦鎵/砷化鎵量子井太陽能電池。在固定本質層總厚度下,將其分成不同對數量子井;由實驗結果可知,當量子井對數增加時,光電流有大幅提升造成轉換效率從1.50 %提升到6.55%,且其40對砷化銦鎵/砷化鎵量子井太陽能電池之吸收波長已達到1100 nm (1.12 eV)。另外為了進一步延伸太陽電池吸收波長,於砷化銦鎵井層中摻入氮元素。其氮含量為4.3%之電池效率為2.48%,其吸收波長可延伸至約1300 nm (0.95 eV);為了改善氮摻入劣化太陽電池特性,我們採用混合式量子井太陽電池結構,而量子井太陽電池效率提升至2.955%。
    另一方面,為了更進一步提高太陽能電池轉換效率,我們亦應用不同形貌的氧化鋅奈米線/氧化鋁鋅層作為抗反射層並應用於傳統三接面太陽電池上,並探討其影響。儘管氧化鋁鋅層電特性十分優越,但其高反射率將會大幅減少入射光進入太陽電池之機會,故我們在氧化鋁鋅層上製作不同形貌氧化鋅奈米線,使得平均加權反射率可降低至12%,而三接面太陽電池轉換效率可從21%增加至26.2%。而在160倍光照下,其三接面太陽電池轉換效率可以提升到32%。

    關鍵字: 太陽電池, 氮砷化銦鎵, 有機金屬氣相沉積系統

    The main purpose of the dissertation was the investigation of InGaAsN material grown by metal organic vapor phase epitaxy (MOVPE) system and its application on multi-junction solar cell; the conversion efficiency of III-V compound triple junction solar cell have exceeded 40%. III-V solar cells with high conversion efficiency and superior radiation resistance, making applied to outer space payloads have great development. To further enhance traditional triple junction solar cell conversion efficiency, we have studied the growth of InGaAsN material with 1 eV band gap energy and lattice matching to GaAs or Ge substrate. The InGaAsN material with considerable potential in applying as the fourth junction is expected as the next generation of high-efficiency solar cells. In the InGaAsN material growth process, we used high-resolution X-ray diffraction (XRD) to analyze the composition and the band gap energy of InGaAsN. In order to extend the absorption wavelength region to 1240 nm while reducing the mismatch of the lattice constants, the TMIn/III and DMHy/VT proportion must be adjusted, and thereby control the composition ratio of indium and nitrogen. Via lower epitaxial temperature、larger growth pressure and higher DMHy/VT ratio, the nitrogen content of InGaAsN material could be upgraded. We have grown un-doped InGaAsN material under various growth temperatures as absorption layer to absorb long wavelength incident light, and fabricated the hetero-junction p-GaAs/u-InGaAsN/n-GaAs solar cells. To improve the the InGaAsN material properties, thermal annealing treatment was employed, and we used X-ray photoelectron spectroscopy (XPS) analysis to analyze the InGaAsN material bonding before and after annealing. From the measurement result, the InGaAN material annealed at 600°C has superior optical and electrical characteristics, and the conversion efficiency of InGaAsN solar cell would reach 4.46%. In addition, we have also developed the InGaAs/GaAs quantum well structure to extend the absorption wavelength, and we applied quantum well structure in the intrinsic layer to form p-i-n quantum well solar cells. Therefore, we would apply quantum well solar cell on InGaP/GaAs/1eV/Ge multi-junction solar cell structure. While quantum well structure growth process by MOVPE, we would adjust TMIn/III ratio and V/III ratio to extend the absorption band edge and crystalline characteristics. Increasing TMIn/III ratio is helpful to extend absorption band edge, but large Indium content would lead to increasing strain caused by lattice mismatch. Therefore, increasing TMIn/III ratio would result in the deterioration of the crystal quality and optical properties of the quantum wells, and the deterioration of quantum well characteristics would be recovered by increasing V/III ratio. Then we grow the InGaAs/GaAs quantum well solar cells with indium content of 22%. Fixed total thickness of the intrinsic layer, divided into different pairs of sub-quantum wells; the result indicates the increasing of quantum well pairs would lead to significant photo current enhancement, the conversion efficiency would increase from 1.5% to 6.55%, and the absorption band edge of 40 pair InGaAs/GaAs quantum well solar cell have reached 1100 nm (1.12 eV). In order to further enhance the solar cell absorption band edge, we incorporate nitrogen into InGaAs well layer. The nitrogen content of InGaAsN/GaAs quantum well solar cells is 4.3% and the conversion efficiency of that is 2.48%, and its absorption band edge would be extended to 1300 nm (0.95 eV). For improving solar cell characteristics deterioration caused by nitrogen incorporation, we applied hybrid quantum well solar cell structure and the hybrid quantum well solar cell conversion efficiency would be enhanced to 2.955%.
    On the other hand, in order to further improve the solar cell performance, we applied different morphologies of ZnO nanowires/ZnO:Al layer as anti-reflective layer on the multi-junction GaAs solar cell structure and explored its effects. We have grown the nano-structural ZnO/ZnO:Al film as anti-reflection coating layer on triple junction solar cells and subsequently characterized their performances. In spite of the superior electrical characteristics of ZnO:Al layer deposited by radio frequency sputtering, a large reflectance of ZnO:Al film on GaAs leads to reduction of incident light. With nano-structural ZnO/ZnO:Al antireflection coating layer implemented, the conversion efficiency of GaAs based triple junction solar cells have enhanced from 21 to 26.2% under AM 1.5 global illumination (100 mw/cm2) and it can be further improved up to 32% with 160-sun illumination.

    Key words: solar cells, InGaAsN, MOVPE

    Contents Abstract (in Chinese) i Abstract (in English) iii Acknowledgement vi Contents vii Table Captions x Figure Captions xi Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Brief history of the solar cell 1 1.1.2 Solar spectrum 2 1.1.3 The physics of solar cells 3 1.1.4 Characteristics of GaAs-based solar cells 5 1.2 Organization of dissertation 6 Chapter 2 MOVPE system and related material characterization 13 2.1 Metal organic vapor phase epitaxy (MOVPE) 13 2.2 High resolution X-ray diffraction (HRXRD) 14 2.3 Photo-luminescence (PL) 15 2.4 Solar simulator and I-V measurement system 16 2.5 Summary 17 Chapter 3 Growth, fabrication, and characterization of InGaAsN double heterojunction solar cells 20 3.1 Introduction 20 3.1.1 1-eV material applied on multi-junction solar cells 20 3.1.2 The characteristics of dilute-nitride semiconductors 22 3.2 The growth of InGaAsN material 23 3.2.1 Experimental details 23 3.2.2 Growth temperature 24 3.2.3 Growth reactor pressure 25 3.2.4 TEGa as gallium source for InGaAsN epilayer 27 3.2.5 Annealing effect on dilute nitride materials 29 3.2.6 Growth V/III ratio 31 3.3 InGaAsN double heterojunction solar cell 33 3.3.1 Experimental details 33 3.3.2 Growth reactor pressure 34 3.3.3 Growth V/III ratio 35 3.3.4 Growth temperature 36 3.4 Summary 38 Chapter 4 The investigation of GaAs-based multi-quantum well solar cells 65 4.1 Introduction 65 4.1.1 Multi-quantum well solar cell structure 65 4.1.2 Multi-quantum well solar cell structure application 67 4.2 The growth of InGaAs/GaAs quantum wells 67 4.2.1 Experimental details 68 4.2.2 Optimization of growth parameter for InGaAs/GaAs quantum wells 68 4.3 The In0.22GaAs/GaAs quantum well solar cell 69 4.3.1 Experimental details 69 4.3.2 Characterization of In0.22GaAs/GaAs quantum well solar cell 70 4.4 InGaAs/GaAs quantum well solar cell with nitrogen incorporation 72 4.4.1 Experimental details 72 4.4.2 The Growth of In0.22GaAsN/GaAs quantum wells 73 4.4.3 The Performances of In0.22GaAsNx/GaAs quantum well solar cells 74 4.5 Summary 78 Chapter 5 Performance improvement of GaAs-based solar cells 94 5.1 Summary 94 5.1.1 Surface-textured antireflection coating layer 94 5.1.2 Hydrothermal technique 96 5.2 Experimental process 97 5.3 Results and discussion 97 5.4 Summary 101 Chapter 6 Conclusions and future work 106 6.1 Conclusion 106 6.2 Future prospects 108 Bibliography 111

    Chapter 1
    [1.1] A. E. Becquerel, “Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques”, Compt. Rend. Acad. Sci., vol. 9, pp. 145-149, 1839.
    [1.2] W. G. Adams and R. E. Day, “The action of light on selenium”, Proc. Roy. Soc. A, vol. 25, pp. 113-117, 1876.
    [1.3] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys., vol. 25, pp. 676-677, 1954.
    [1.4] R. Gremmelmaier, “Gallium-arsenic photoelement”, Z. Naturforsch. A, vol. 19, pp. 501-502, 1955.
    [1.5] D. A. Jenny, J. J. Loferski and P. Rappaport, “Photovoltaic effect in GaAs p-n junctions and solar energy conversion”, Phys. Rev., vol. 101, pp. 1208-1209, 1956.
    [1.6] Zh. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov and V. G. Trofim,“Solar-energy converters based on p-n AlxGa1-xAs-GaAs heterojunctions”, Sov. Phys. Semicond., vol. 4, pp. 2047-2048, 1971.
    [1.7] J. M. Woodall and H. J. Hovel, “High-efficiency AlxGa1-xAs-GaAs solar cells”, Appl. Phys. Lett., vol. 21, pp. 379-381, 1972.
    [1.8] Mary D. Archer and Robert Hill, “Clean Electricity from Photovoltaics (Series on Photoconversion of Solar Energy, Vol. 1)”, Imperial College Press, chap. 13, pp. 585-607, 2001.
    [1.9] C. Amano, H. Sugiura, A. Yamamoto and M. Yamaguchi, “20.2% efficiency Al0.4Ga0.6As/GaAs tandem solar cells grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 51, pp. 1998-2000, 1987.
    [1.10] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt: Res. Appl., vol. 11, pp. 225-230, 2003.
    [1.11] X. Mathew, G. W. Thompson, V. P. Singh, J. C. McClure, S. Velumani, N. R. Mathews and P. J. Sebastian, “Development of CdTe thin films on flexible substrates —a review”, Sol. Energy Mater. Sol. Cells, vol. 76, pp. 293-303, 2003.
    [1.12] P. Vivo, J. Jukola, M. Ojala, V. Chukharev and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1416-1420, 2008.
    [1.13] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films”, Nature, vol. 353, pp. 737-740, 1991.
    [1.14] L. Kazmerski, National Renewable Energy Laboratory (NREL), “Best Research-Cell Efficiencies”, Rev. 04-2011, 2011.
    [1.15] American Society for Testing and Materials (ASTM), “ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances”, 1992.
    [1.16] J. Nelson, “The Physics of Solar Cells”, Imperial College Press, UK, 2003.
    [1.17] P. H. Wu, Y. K. Su, I L. Chen, C. H. Chiou, J. T. Hsu and W. R. Chen, “Strain-Compensated GaAsN/InGaAs Superlattice Structure Solar Cells,” Jpn J. Appl. Phys. Vol. 45, No. 25, pp. L647–L649, 2006.
    [1.18] P. Würfel and U. Würfel, Physics of solar cells : from basic principles to advanced concepts, 2nd, updated and expanded ed. Weinheim: Wiley-VCH, 2009.
    [1.19] S. O. Kasap, “Optoelectronics and photonics: principles and practices”, 2001.
    [1.20] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell under Concentrated Light by Simulation Program with Integrated Circuit Emphasis”, Jpn. J. Appl. Phys., vol. 43, no.3, pp.882-889, 2004.
    [1.21] B. Burnett. “The basic physics and Design of III-V Multijunction Solar Cells”, 2002.
    [1.22] R.R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K.M. Edmondson, D.C. Law, C.M. Fetzer, S. Mesropian, N.H. Karam, "Band-gap- engineered architectures for high-efficiency multijunction concentrator solar cells", 24th EU PVSEC, Hamburg, Germany, pp.55-61, 2009.

    Chapter 2
    [2.1] Aixtron 200/4 Operation Manual, Aixtron AG, Rev.: 2.1, Chapter 1, pp. 6.
    [2.2] G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999.
    [2.3] D. K. Bowen and B. K. Tanner, “High Resolution X-ray Diffractometry and Topography”, CRC Press, USA, Feb. 1998.
    [2.4] S. H. Wemple and J. A. Seman, “Optical transmission through multilayered structures”, Appl. Opt., vol. 12, no. 12, pp. 2947-2949, 1973.
    [2.5] Mark Fox, “Optical Properties of Solids”, 2nd Edition, Oxford University Press, 2010.

    Chapter 3
    [3.1] C. K. Williams, T. H. Glisson, J. R. Hauser and M. A. “Littlejohn Energy bandgap and lattice constant contours of iii-v quaternary alloys of the form Ax By Cz D or ABx Cy Dz”, J. Electronic Materias, vol. 7, 5 pp. 639-646, 1978.
    [3.2] J. F. Geisz , “New Materials for Future Generations of III-V Solar Cells,” the National Center for Photovoltaics Program Review Meeting Denver, Colorado 1998.
    [3.3] B. Burnett, “The Basic Physics and Design of III-V Multijunction Solar Cell,” 2002.
    [3.4] A. D. Vos, ”Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D: Appl. Phys., vol. 13, pp. 839-846, 1980.
    [3.5] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance”, Jpn. J. Appl. Phys., vol. 35, part 1, no. 2B, pp. 1273-1275, 1996.
    [3.6] J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, B. M. Keyes, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs”, J. Cryst. Growth, vol. 195, pp.401-408 (1998).
    [3.7] M. Henini, “Dilute Nitride Semiconductors”, 1st Edition, Elsevier Science Publication, Apr. 2005.
    [3.8] D. J. Friedman, J. F. Geisz, S. R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer”, J. Cryst. Growth, vol. 195 pp.409-415, 1998.
    [3.9] N. Miyashita, Y. Shimizu, N. Kobayashi, Y. Okada, and M. Yamaguchi, “Fabrication of GaInNAs-based solar cells for application to multi-junction tandem solar cells,” IEEE 4th World Conference on Photovoltaic Energy Conversion 2006.
    [3.10] S. H. Hsu, Y. K. Su, R. W. Chuang, S. J. Chang, W. C. Chen, and W. R. Chen, “Study of electronic properties by persistent photoconductivity measurement in GaxIn1-xNyAs1-y grown by MOCVD”, Jpn. J. Appl. Phys. vol. 44, pp. 2454-2457, 2005.
    [3.11] S. R. Kurtz, A. A. Allerman, C. H. Seager, R. M. Sieg, and E. D. Jones, “Minority carrier diffusion, defects, and localization in InGaAsN, with 2% nitrogen”, Appl. Phys. Lett. vol. 77, pp. 400-403, 2000.
    [3.12] S. B. Zhang and S.-H. Wei, “Nitrogen solubility and N-induced defect complexes in epitaxial GaAs:N”, Phys. Rev. Lett., vol. 86, No. 9, pp. 1789-1792, 2001.
    [3.13] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs”, Appl. Phys. Lett., vol. 74, no. 5, pp. 729-731, 1999.
    [3.14] B. Royall,N. Balkan, "Modelling of multijunction solar cells with dilute nitride n–i–p–i junctions", physica status solidi (b) vol. 248, pp. 1203–1206, 2011.
    [3.15] S. R. Kurtz, D. Myers and J. M. Olson, “Projected performance of three- and four-junction devices using GaAs and GaInP”, in Proc. of the 26th IEEE Photovoltaic Specialists Conf., Anaheim, California, New York, USA, pp. 875-878, 1997.
    [3.16] M. Weyers, M. Sato and H. Ando, “Red shift of photoluminescence and absorption in dilute GaAsN alloy layers”, Jpn. J. Appl. Phys., vo. 31, part 2, pp. L853-L855, 1992.
    [3.17] J. Wu, W. Shan and W. Walukiewicz, “Band anticrossing in highly mismatched III–V semiconductor alloys”, Semicond. Sci. Technol., vol. 17, pp. 860-869, 2002.
    [3.18] W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Effect of nitrogen on the band structure of GaInNAs alloys”, J. Appl. Phys., vol. 86, no. 4, pp. 2349-2351, 1999.
    [3.19] C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, W. Walukiewicz, W. Shan, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Effect of nitrogen-induced modification of the conduction band structure on electron transport in GaAsN alloys”, Phys. Stat. Sol. (b), vol. 216, no. 1, pp. 135-139, 1999.
    [3.20] S. G. Spruytte, C. W. Coldren, J. S. Harris, W. Wampler, P. Krispin, K. Ploog and M. C. Larson, “Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal”, J. Appl. Phys., vol. 89, no. 8, pp. 4401-4406, 2001.
    [3.21] M. Kawaguchi, T. Miyamoto, E. Gouardes, T. Kondo, F. Koyama and K. Iga, “Photoluminescence dependence on heterointerface for metalorganic chemical vapor deposition grown GaInNAs/GaAs quantum wells”, Appl. Phys. Lett., vol. 80, no. 6, pp. 962-964, 2002.
    [3.22] E. Gouardes, F. Alexandre, O. Gauthier-Lafaye, A. Vuong-Becaert, V. Colson and B. Thédrez, “Studies of MOVPE growth conditions for the improvement of GaInAsN on GaAs substrates for 1.3 μm laser emission”, J. Cryst. Growth, vol. 248, pp. 446-450, 2003.
    [3.23] K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth and A. W. Bett, “Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications”, J. Cryst. Growth, vol. 310, pp. 2222-2228, 2008.
    [3.24] Y. Takano, K. Kobayashi, H. Iwahori, N. Kuroyanagi, K. Kuwahara, S. Fuke, and S. Shirakata, “Low temperature growth of InGaAs layers on misoriented GaAs substrates by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. vol. 80, pp. 2054-2057, 2002.
    [3.25] E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith and S. A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium”, J. Cryst. Growth, vol. 217, pp. 47-54, 2000.
    [3.26] R. T. Lee and G. B. Stringfellow, “Pyrolysis of 1,1 dimethylhydrazine for OMVPE growth”, J. Electron. Mater., vol. 28, no. 8, pp. 963-969, 1999.
    [3.27] C. Plass, H. Heinecke, O. Kayser, H. Lüth and P. Balk, “A comparative study of Ga(CH3)3, Ga(C2H5)3 and Ga(C4H9)3 in the low pressure MOCVD of GaAs”, J. Cryst. Growth, vol. 88, pp. 455-464, 1988.
    [3.28] C. Jin, S. A. Nikishin, V. I. Kuchinskii, H. Temkin and M. Holtz, “Metalorganic molecular beam epitaxy of (In)GaAsN with dimethylhydrazine”, J. Appl. Phys., vol. 91, pp. 56-64, 2002.
    [3.29] H. Saito, T. Makimoto and N. Kobayashi, “MOVPE growth of strained InGaAsN/GaAs quantum wells”, J. Cryst. Growth, vol. 195, pp. 416-420, 1998.
    [3.30]S. G. Spruytte, C. W. Coldren, J. S. Harris, W. Wampler, P. Krispin, K. Ploog and M. C. Larson, “Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal”, J. Appl. Phys., vol. 89, pp. 4401-4406, 2001.
    [3.31] M. Kawaguchi, T. Miyamoto, E. Gouardes, T. Kondo, F. Koyama and K. Iga, “Photoluminescence dependence on heterointerface for metalorganic chemical vapor deposition grown GaInNAs/GaAs quantum wells”, Appl. Phys. Lett. vol. 80 , pp. 962-964, 2002.
    [3.32] I. A. Buyanova, W. M. Chen, B. Monemar, H. P. Xin and C. W. Tu, “Photoluminescence characterization of GaNAs:GaAs structures grown by molecular beam epitaxy”, Mater. Sci. Eng. B, vol. 75, pp. 166-169, 2000.
    [3.33] K. Takeuchi, F. Koyama,K. Iga, "A novel GaInNAs-GaAs quantum-well structure for long-wavelength semiconductor lasers" IEEE Photonic Tech. Lett., vol. 9 ,pp. 1448-1450, 1997
    [3.34] E.-M. Pavelescu, J. Wagner, H. -P. Komsa, T. T. Rantala, M. Dumitrescu and M. Pessa, “Nitrogen incorporation into GaInNAs lattice-matched to GaAs: The effects of growth temperature and thermal annealing”, J. Appl. Phys., vol. 98, 083524, 2005.
    [3.35] A. Khan, S. R. Kurtz, S. Prasad, S. W. Johnston, and J. Gou, “Correlation of nitrogen related traps in InGaAsN with solar cell properties”, Appl. Phys. Lett. vol. 90, 243509, 2007.
    [3.36] K. Volz, T. Torunski, D. Lackner, O.Rubel, W. Stolz, C. Baur, S. Müller, F. Dimroth, W. Bett, “Material Development for Improved 1 eV (GaIn)(NAs) Solar Cell Structures”, J. Sol. Energy Eng., vol.129, pp. 266-271, 2007.
    [3.37] R. L. Woo, G. Malouf, S. F. Cheng, R. N. Woo, M. Goorsky, and R. F. Hicks, “Red shift in the photoluminescence of indium gallium arsenide nitride induced by annealing in nitrogen trifluoride”, J. Cryst. Growth, vol. 310, pp. 579–583, 2008.
    [3.38] C. H. Cardinaud, G. Lemperiere, M.C. Peignon, P.Y. Jouan, “Characterisation of TiN coatings and of TiN/Si interface by x-ray photoelectron spectroscopy and Auger electron spectroscopy”, Appl. Surf. Sci.,vol. 68, pp. 595-603, 1993.
    [3.39]C. Monier, A. G. Baca, S. Z. Sun, E. Armour, F. Newman and H. Q. Hou, “Observation of enhanced transport in carbon-doped InGaAsN after in situ anneal and its impact on performance of NpN InGaP/InGaAsN heterojunction bipolar transistors”, Appl. Phys. Lett., vol. 81, pp. 2103-2105, 2002.
    [3.40] T. Hoshii, M. Yokoyama, H. Yamada, M. Hata, T. Yasuda, M. Takenaka, and S. Takagi, “Impact of InGaAs surface nitridation on interface properties of InGaAs metal-oxide-semiconductor capacitors using electron cyclotron resonance plasma sputtering SiO2”, Appl. Phys. Lett., vol. 97, 132102, 2010.
    [3.41]T. D. Veal, I. Mahboob, L. F. J. Piper, C. F. McConvilleournal, and M. Hopkinson, “Core-level photoemission spectroscopy of nitrogen bonding in GaNxAs1−x alloys”, Appl. Phys. Lett. vol. 85, pp. 1550-1552, 2004.
    [3.42]K. Volz, D. Lackner, I. Ne´meth, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications”, J. Cryst. Growth, vol. 310, pp.2222-2228, 2008.
    [3.43]M. O. Watanabe, A. Tanaka, T. Udagawa, T. Nakanish, “AsH3 to Ga(CH3)3 Mole Ratio Dependence of Dominant Deep Levels in MOCVD GaAs”, Jpn. J. Appl. Phys, vol. 22, pp. 923-929,1983.
    [3.44]R. Bhat, C. Caneau, L. Salamanca-Riba, W. Bi and C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition”, J. Cryst. Growth, vol. 195, pp. 427-437, 1998.
    [3.45] I. R. Sellers, W.-S. Tan, K. Smith, S. Hooper, S. Day, and M. Kauer, “Wide depletion width of 1 eV GaInNAs solar cells by thermal annealing”, Appl. Phys. Lett., vol. 99, pp. 151111, 2011.
    [3.46]A. Polimeni, G. Baldassarri H. v., H. M. Bissiri, M. Capizzi, M. Fischer, M. Reinhardt and A. Forchel, “Effect of hydrogen on the electronic properties of InxGa1-xAs1-yNy/GaAs quantum wells”, Phys. Rev. B, vol. 63, pp. 201304(R), 2001.
    [3.47]N. Q. Thinh, I. A. Buyanova, P. N. Hai, W. M. Chen, H. P. Xin and C. W. Tu, “Signature of an intrinsic point defect in GaNxAs1-x”, Phys. Rev. B, vol. 63, pp. 033203, Jan. 2001.
    [3.48]N. Q. Thinh, I. A. Buyanova, W. M. Chen, H. P. Xin and C. W. Tu, “Formation of nonradiative defects in molecular beam epitaxial GaNxAs1-x studied by optically detected magnetic resonance”, Appl. Phys. Lett., vol. 79, pp. 2089-2091, 2001.
    [3.49]T. Ahlgren, E. Vainonen-Ahlgren, J. Likonen, W. Li and M. Pessa, “Concentration of interstitial and substitutional nitrogen in GaNxAs1-x”, Appl. Phys. Lett., vol. 80, pp. 2314-2316, 2002.
    [3.50]L. H. Li, Z. Pan, W. Zhang, Y. W. Lin, Z. Q. Zhou and R. H. Wu, “Effects of rapid thermal annealing on the optical properties of GaNxAs1-x/GaAs single quantum well structure grown by molecular beam epitaxy”, J. Appl. Phys., vol. 87, pp. 245-248, 2000.
    [3.51]I. A. Buyanova, G. Pozina, P. N. Hai, N. Q. Thinh, J. P. Bergman, W. M. Chen, H. P. Xin and C. W. Tu, “Mechanism for rapid thermal annealing improvements in undoped GaNxAs1-x/GaAs structures grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 77, pp. 2325-2327, 2000.
    [3.52]Q. D. Zhuang, A. Krier and C. R. Stanley, “Strain enhancement during annealing of GaAsN alloys”, J. Appl. Phys., vol. 101, pp. 103536, 2007.
    [3.53]H. P. Xin, K. L. Kavanagh, M. Kondow and C. W. Tu, “Effects of rapid thermal annealing on GaInNAs/GaAs multiple quantum wells”, J. Cryst. Growth, vol. 201-202, pp. 419-422, 1999.

    Chapter 4
    [4.1] R. J. Chaffin, G. C. Osbourn, L. R. Dawson, R. M. Biefeld, “Strained Superlattice Quantum Well, Multijunction Photovoltaic Cell”, IEEE 17th Photovoltaic Specialists Conf., pp.743-746, 1984.
    [4.2] R. J. Chaffin, G. C. Osbourn, “Quantum Well Multijunction Photovoltaic Cell”, US Patent ,no. 4688068, 1987.
    [4.3] K. W. J. Barnham, G. Duggan, “A New Approach To High-Efficiency Multi-Band-Gap Solar Cells”, J. Appl. Phys., vol. 67, pp.3490-3493, 1990.
    [4.4] N.J. Ekins-Daukes, D.B. Bushnell, J.P. Connolly, K.W.J. Barnham, M. Mazzer, J.S. Roberts, G. Hill, R. Airey ,” Strain-balanced quantum well solar cells”, Physica E, vol. 14, pp.132–135, 2002.
    [4.5] N.J. Ekins-Daukes, J.M. Barnes, K.W.J. Barnham, J.P. Connolly, M. Mazzer, J.C. Clark, R. Grey, G. Hill, M.A. Pate, J.S. Roberts,” Strained and strain-balanced quantum well devices for high-efficiency tandem solar cells”, Sol. Energy Mater. & Sol. Cells, vol. 68, pp. 71-87, 2001.
    [4.6] S. R. Kurtz, D. Myers, J. M. Olson, “Projected performance of three-and four-junction devices using GaAs and InGaP”, IEEE 26th Photovoltaic Specialists Conf., pp.875-878, 1997.
    [4.7] T. K. Sharma, S. D. Singh, S. Porwal, A. K. Nath, “Spectroscopic investigations of MOVPE-grown InGaAs/GaAs quantum wells with low and high built-in strain”, J. Cryst. Growth , vol. 298, pp. 527-530, 2007.
    [4.8] Z. Zhang, J. Berggren, M. Hammar, “On the long-wavelength optimization of highly strained InGaAs/GaAs quantum wells grown by metal-organic vapor-phase epitaxy”, J. Cryst. Growth, vol. 310, pp. 3163-3167, 2008.
    [4.9] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, B. E. Hammons, “InGaAsN solar cells with 1.0eV band gap, lattice matched to GaAs”, Appl. Phys. Lett. vol. 74, pp. 729-731, 1999.
    [4.10] R.J. Kaplar, D. Kwon, S.A. Ringel, A.A. Allerman, S.R. Kurtz, E.D. Jones, S.M. Sieg, “Deep levels in p- and n-type InGaAsN for high-efficiency multi-junction III–V solar cells”, Sol. Energy Mater. Sol. Cells, vol. 69, pp. 85-91, 2001.
    [4.11] K. Volz, T. Torunski. B. Kunert, O. Rubel, W. Stolz, “Specific structural and compositional properties of (GaIn)(NAs) and their influence on optoelectronic device performance”, J. Cryst. Growth, vol. 272, pp. 739-747, 2004.
    [4.12] T. J. Garrod, J. Kirch, P. Dudley, S. Kim, L. J. Mawst, T. F. Kuech, “Narrow band gap GaInNAsSb material grown by metal organic vapor phase epitaxy (MOVPE) for solar cell applications”, J. Cryst. Growth, vol. 315, pp. 68-73, 2011.
    [4.13] A. T. Macrander, G. P. Schwartz and G. J. Gualtieri, “X-ray and Raman characterization of AlSb/GaSb strained layer superlattices and quasiperiodic Fibonacci lattices”, J. Appl. Phys., vol. 64, pp. 6733-6745, 1988.
    [4.14]W. G. Bi, F. Deng, S. S. Lau and C. W. Tu, “High resolution x-ray diffraction studies of AlGaP grown by gas-source molecular-beam epitaxy”, J. Vac. Sci. Technol. B, vol. 13, no. 2, pp. 754-757, 1995.
    [4.15]N. G. Anderson, S. J. Wojtczuk, “Open-circuit voltage characteristics of InP-based quantum well solar cells”, J. Appl. Phys., vol. 79, pp. 1973-1978, 1996.
    [4.16]Jenny Nelson, The physics of solar cells, Imperial college, U.K., 2003.
    [4.17]J. S. Ng, W. M. Soong, M. J. Steer, M. Hopkinson, J. P. R. David, J. Chamings, S. J. Sweeney, A. R. Adams, “Long wavelength bulk GaInNAs p−i−n photodiodes lattice matched to GaAs”, J. Appl. Phys., vol. 101, pp. 064506, 2007.
    [4.18]T. H. Wu, Y. K. Su, Y. C. Lin, Y. J. Wang, “Growth, Fabrication, and Characterization of InGaAsN Double Heterojunction Solar Cells”, Jpn. J. Appl. Phys. vol. 50, pp. 01AD07, 2011.

    Chapter 5
    [5.1] C. H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs”, Optics Letters, vol. 33, pp. 2224-2226, 2008.
    [5.2] S. J. An, J. H. Chae, G.-C. Yi,and G. H. Park,“Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays”, Appl.Phys. Lett., vol. 92, pp. 121108, 2008.
    [5.3] S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas., “Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods”, Advanced Materials,vol. 21, pp. 973-978, 2009.
    [5.4] J. W. Lim, S. H. Lee, J. K. Kim, and S. J. Yun, “Antireflection Properties of Al2O3 and AlxTi1-xOy Films on ZnO:Ga Coated Si Wafer for Thin-Film Solar Cell”, Electrochemical and Solid-State Letters, vol. 13(2), pp. G17-G20, 2010.
    [5.5] C. Aydin, A. Zaslavsky, G. J. Sonek, and J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures”, Appl. Phys. Lett., vol. 80, pp. 2242-2245, 2002.
    [5.6] P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light”, Nanotechnology, vol. 8(2), pp. 53-56, 1997.
    [5.7] C. H. Sun, P. Jiang, and B. Jiang,“Broadband moth-eye antireflection coatings on silicon”, Appl. Phys. Lett. vol. 92, pp. 061112, 2008.
    [5.8] M. Zhang, Z. Zhou, X. Yang, X. Ye, and Z. L. Wang, “Fabrication of ZnO Nanowire Devices via Selective Electrodeposition”, Electrochemical and Solid-State Letters, vol. 11(9), pp. D69-D71, 2008.
    [5.9] K. A. Salman, Z. Hassan, Khalid Omar, “Effect of Silicon Porosity on Solar Cell Efficiency”, International Journal of Electrochemical Science, vol. 7, pp. 376-386, 2012.
    [5.10] K. A. Salman, Khalid Omar, Z. Hassan, “Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers”, Solar Energy, vol. 86, pp. 541-547, 2012.
    [5.11] K. A. Salman, Khalid Omar, Z. Hassan,“The effect of etching time of porous silicon on solar cell performance”, Superlattices and Microstructures, vol. 50 , pp. 647-658, 2011.
    [5.12] K. A. Salman, Khalid Omar, Z. Hassan, “Nanocrystalline ZnO film grown on porous silicon layer by radio frequency sputtering system”, Materials Letters, vol. 68, pp. 51-53, 2012.
    [5.13] S. R. Kennedy and M. J. Brett,“Porous Broadband Antireflection Coating by Glancing Angle Deposition”, Appl. Optics, vol. 42, pp.4573-4579, 2003.
    [5.14] S. J. Wilson, and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces”. Opt. Acta, vol. 7, pp.993–1009, 1982.
    [5.15] Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells”, Nano Letters, vol. 8, pp. 1501-1505, 2008.
    [5.16] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection”, Nature Photonics, vol. 1, pp. 176-179, 2007.
    [5.17] L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Linquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes”, Chem. of Mater., vol. 13, pp. 4395-4398, 2001.
    [5.18] Y. Y. Xi, D. Li, A. B. Djurišić, M. H. Xie, K. Y. K. Man, and W. K. Chan, “Hydrothermal Synthesis vs Electrodeposition for High Specific Capacitance Nanostructured NiO Films”, Electrochemical and Solid-State Letters, vol. 11(6), pp. D56-D59, 2008.
    [5.19] K. Y. Lee, C. Becker, M. Muske, F. Ruske, and S. Gall, “Temperature stability of ZnO:Al film properties for poly-Si thin-film devices”, Appl. Phys. Lett., vol. 91, pp. 241911, 2007.
    [5.20] T. Minami, H. Sato, H. Imamoto and S. Takata, “Substrate Temperature Dependence of Transparent Conducting Al-Doped ZnO Thin Films Prepared by Magnetron Sputtering”, Jpn. J. Appl. Phys., vol. 31, pp. L257-L260, 1992.
    [5.21] D. Buie, M. J. McCann, K. J. Weber, C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics”, Sol. Energy Mater. and Sol. Cells, vol. 81, pp. 13-24, 2004.
    [5.22] J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes”, Optics Express, vol. 18, pp. A286-A292, 2010.
    [5.23] J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Qi Wang, M. McGehee, S. Fan and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays”, Nano Lett., vol. 9, pp. 279-282, 2009.

    Chapter 6
    [6-1] W. Ha, V. Gambin, S. Bank, M. Wistey, H. Yuen, S. Kim and J. S. Harris Jr., “Long-wavelength GaInNAs(Sb) lasers on GaAs”, IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1260-1267, Sep. 2002.
    [6-2] W. C. Chen, Y. K. Su, R. W. Chuang and S. H. Hsu, “Investigation of the optical properties of InGaAs(N):(Sb) quantum wells grown by metal organic vapor phase epitaxy”, J. Vac. Sci. Technol. A, vol. 24, no. 3, pp. 591-594, 2006.
    [6-3] D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy”, J. Appl. Phys., vol. 101, no. 11, pp. 114916, Jun. 2007.

    下載圖示 校內:2018-01-14公開
    校外:2018-01-14公開
    QR CODE