簡易檢索 / 詳目顯示

研究生: 林煒傑
Lin, Wei-chieh
論文名稱: 以模型試驗探討加勁邊坡之耐震行為
Study on the seismic-resisting behavior of reinforced slopes using model tests
指導教授: 黃景川
Huang, Ching-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 129
中文關鍵詞: 耐震加勁鋼針邊坡穩定
外文關鍵詞: seismic-resisting, reinforced slopes, steel rods
相關次數: 點閱:97下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區人為或自然陡坡相當多,再加地處太平洋地震帶,為確保加勁邊坡構造的安全及穩定,研究加勁邊坡的耐震行為並列入設計考慮,為邊坡整治及耐震防災中重要的一環。目前一般的土壤加勁的模型研究,除室外大型試驗外,室內模型試驗大都採用砂箱縮尺模型試驗,並証實有相當不錯的模擬效果。不過,因儀器構造上的限制,砂箱試驗仍有部分無法真正模擬現地的狀況。

    基於其原因,本研究採用二向度(Two-dimensional)鋼針模型傾斜試驗來進行探討加勁邊坡在擬靜態地震分析力作用下之行為,藉由鋼針較大的密度來降低尺寸效應及良好的平面應變行為來消除邊界的摩擦效應,希望能在加勁邊坡擬靜態耐震試驗的行為反應中,獲得較正確的行為研究,並與一般傳統試驗結果進行比較。

    針對面板勁度、背填強弱、加勁材層數進行探討,依據擬靜態分析原理,分析邊坡在不同加勁狀態下的穩定性及變形行為。研究重點在於邊坡開始滑動前,加勁區域土體的破壞面的形成過程,作為探討加勁邊坡耐震設計最佳化的依據。

    研究顯示影響加勁效果的因素很多,且各影響因素間有互制關係存在。加勁材層數與背填強弱這兩個元素共同影響系統穩定度,加勁邊坡的穩定係由此綜合效果所控制。單方面增加某一元素的強度,不一定能使系統穩定度增強,而是在某種組合下,能達到最好的系統穩定度。其中,背填增強對極限傾斜角有顯著的增加。而加勁材層數提昇對系統整體穩定度成正比,當面板厚度度不足時,5層加勁材層數仍提供穩定的能力,來維持一定的系統穩定度。

    A series of tilting test on reinforced model slope backfilled withregularly packed 1.96mm-diameter steel rods and mixed 1.96mm &1mm (2:1) steel rods were performed to investigate the relativeimportance of facing rigidity , backfilled well or fail and reinforcement stiffness for the pseudo-static seismic stability of reinforced slope.
    Aluminum full-high panel with a wide range of bending rigidities andreinforcing materials with significantly different tensile stiffness wereused in the tests to investigate their effect on the ultimate tilting angles
    (or pseudo-static-based critical seismic coefficient) of the reinforcedmodel slopes.

    It was found that , of the factors investigated , the backfill frictionangle of the reinforcing materials and reinforcement quantity plays anessential role in the pseudo-static seismic stability of the walls.When the
    backfill friction angle of the reinforced model slops was too low ,increasing the facing rigidity or tensilesstiffness of the reinforcementresulted in a negligible effect on the ultimate tilting angle of the
    reiniforced slopes. Increasing the ratio of reinforcement quantity from 3to 5 provided a substantial increase inθ,regardless of the tensile stiffnessand facing thickness investigated in the study.The effect is a promising way of increasing the pseudo-static seismic stability of reinforced.

    第一章 緒論..........................................1 1-1 研究動機.........................................1 1-2 研究目的.........................................2 1-3 研究內容.........................................3 第二章 文獻回顧......................................6 2-1 分析原理.........................................6 2-1-1 加勁擋土結構穩定分析...........................6 2-1-2 模型試驗分析...................................7 2-1-3 工作應力分析...................................8 2-1-4 動態設計分析模式...............................8 2-2 設計方法.........................................14 2-2-1 擬靜態(Pseudo-Static)土壓力原理................14 2-2-2 極限平衡狀態之土壓力理論.......................14 2-2-3 加勁結構物的極限平衡分析法應用.................15 2-2-4 加勁擋土牆動態設計.............................15 2-3 加勁元素.........................................16 2-3-1 剛性面板的加勁效果.............................16 2-3-2 面板剛度與加勁材鋪設長度對牆體變形性之影響.....17 2-3-3 加勁材的佈設間距...............................17 第三章實驗裝置與介紹.................................33 3-1 傾斜試驗相關文獻回顧.............................33 3-1-1 擬靜態分析的地震係數...........................33 3-1-2 震動台與傾斜試驗的比較.........................34 3-1-3 傾斜試驗與震動台間的差異.......................34 3-1-4 傾斜試驗用在擬靜態理論的適用性.................34 3-2 鋼針傾斜試驗的特點...............................35 3-2-1 鋼針的傾斜試驗.................................35 3-2-2 基本物理試驗...................................35 a 鋼針直剪試驗.......................................35 b 加勁材寬幅機試驗...................................36 3-2-3 本傾斜試驗的特點...............................36 3-3 傾斜試驗的研究方向...............................38 3-4 孔隙比e 與ψ係 ..................................38 3-4-1 孔隙比量測方法.................................40 3-4-2 孔隙比量測結果.................................40 3-4-3 孔係比與ψ.....................................41 3-4-4 混合鋼針傾斜台孔係比驗.........................41 3-4-5 結論...........................................41 第四章試驗說明與研究方法.............................67 4-1 試驗計畫......................................... 67 4-1-1 模型實驗裝置...................................67 a.量測系統......................................... 67 b.Strain gauge......................................67 c.加勁元件..........................................67 4-1-2 模型相似性.....................................67 4-1-3 試驗組合內容...................................69 4-2 試驗材料.........................................69 4-2-1 背填材料.......................................69 4-2-2 面板...........................................70 4-2-3 加勁材.........................................70 4-3 試驗步驟.........................................71 4-3-1 材料準備及模型邊坡組立.........................71 4-3-2 傾斜試驗.......................................72 第五章模型試驗結果與分析.............................93 5-1 試驗結果.........................................93 5-1-1 破壞角度.......................................93 5-1-2 破壞變形分析與破壞面發展過程示意圖.............93 5-1-3 面板變形.......................................94 5-1-4 Strain gauge 之量測............................94 5-2 分析與討論.......................................94 5-2-1 均勻鋼針加勁材間距效果.........................94 5-2-2 背填區摩擦角φ效果.............................95 5-2-3 滑動面發展與加勁力發展關係.....................96 第六章結論與建議....................................114 6-1 結論............................................114 6-2 建議............................................115

    1、 孟繁羽(1996)”探討壁面勁度與主動土壓力關係之鋼針模型試驗”,碩士論文,國立成功大學土木工程學研究所,台南。

    2、 周育慶(1997)”鋼針模型擋土牆之主動土壓力試驗與分析”,碩士論文,國立成功大學土木工程學研究所,台南。

    3、 洪勇善(1999)“土釘擋土結構之力學行為”, 博士論文,國立台灣大學土木工程學研究所,台北。

    4、 陳榮河(2001)”極限平衡狀態之土壓力理論” 地工技術,第85期 pp.5-12

    5、 李維峰、黃亦敏(2001)”加勁擋土牆動態設計與研發” 地工技術,第85期 pp.13-24

    6、 洪永善(2003)“土釘加勁陡坡破壞機制與耐震行為” 地工技術,第98期 pp.17-26

    7、 洪振沖、常正之、黃景川(2005)”探討加勁邊坡穩定性及變形行為之模型試驗與分析”第11屆大地工程研討會。

    8、 洪振沖(2008)”加勁邊坡的地震穩定性探討”。

    9、 ASTM D2487 :“Standard test method for classification of soils for engineering purposes” American Society for Testing and Materials.

    10、 Bathurst, R. J. (1998) :“Segmental Retaining walls-Seismic Design Manual”1st ed., the National Concrete Masonry Association, Hemdon, VA.

    11、 Bathurst, R. J. and Hatami, K. (1998). Seismic response analysis of a geosynthetic-reinforced soil retaining wall. Geosynthetic International, Vol. 5, Nos. 1-2, 127-166.

    12、 Bathurst, R. J. and Simac, M. R. (1997) “Design and performance of the facing column for geosynthetic reinforced segmental retaining walls” Mechanically Stabilized Backfill, Wu ed., pp. 193-208.

    13、 Bathurst, R. J., Cai, Z., Alfaro, M. and Pelletier, M. (1997) “Seismic design issues for geosynthetic reinforced segmental retaining walls”, Mechanically Stabilized Backfill, Wu ed., Balkema, Rotterdam, pp. 79-97.

    14、 Bathurst, R. J., El-Emam, M. and Mashhour, M. M. (2002a) : “Shaking table model study on the dynamic response of reinforced soil walls,” Proc. 7th Int. Geosynthetic Conf., Nice, France, Vol. 1, pp. 99-102.

    15、 Bathurst, R. J., Hatami, K. and Alfaro, M. C. (2002b) : “Geosynthetic-reinforced soil walls and slopes-seismic aspects.” Geosynthetics and Their Applications (ed. by Shukla S. K.), Thomas Telford, Ch. 14, 327-392.

    16、 Gassler, G. (1988) “Soil nailing-theoretical basis and practical design” Proc. Int. Geotech. Sympo. Theory and Practice of Earth Reinforcement, Fukuoka, Kyushu, Yamanouchi, T., Miura, N. and Ochiai, H. eds., Balkema, Rotterdam, pp. 283-288.

    17、 Horii, K., Kishida, H., Tateyama, M. and Tatsuoka, F. (1994) “Computerized design method for geosynthetic-reinforced soil retaining walls for railway embankments” Recent Case Histories of Permenant Geosynthetic-Reinforced Soil Retaining Walls, Tatsuoka, F. and Leshchinsky, D., Editors, Balkema, Proc. Seiken Sympo. No. 11, Tokyo, Japan, Nov., 1992, pp. 205-218.

    18、 Huang, C. C. and Chiou, S. L. (2005a) “Investigations of installation damage of some geogrids using laboratory tests” submitted to Geosynthetics International (revised).

    19、 Huang, C. C. and Wang, W. C. (2005b) “Seismic displacement charts for the performance-based assessment of reinforced soil walls”, Geosynthetic International, Vol. 12, No. 4, pp. 176-190.

    20、 Huang, C. C., Chou, L. H. and Tatsuoka, F. (2003) “Seismic displacements of geosynthetic-reinforced soil modular block walls”, Geosynthetics International, Vol. 10, No. 1., pp. 2-23.

    21、 Huang, C. C., Menq, F. Y., and Chou, Y. C. (1999) “The effect of the bending rigidity of a wall on lateral pressure distribution” Can. Geotech. J., Vol. 36, pp. 1039-1055.

    22、 Huang, C. C., Horng , J. C., and Charng, J. J. (2008) “Seismic stability of reinforced slopes:effects of reinforcement properties and facing rigidity” Geosynthetics International, Vol. 15, No. 2., pp. 107-118

    23、 Japanese Railway Technical Research Institute (JRTRI), (1999) “Design guideline for railway structures-Aseismic design”, Maruzen, 325-326 (in Japanese).

    24、 Jenq-Jy Charng, Jenn-Chong Horng, June-Shen Leau(2004)”On the Behavior of Reinforced Retaining Structure via Steel-Rod Model”,The 28th National Conference on Theoretical and Applied Mechanics, pp.785-792

    25、 Jewell, R. A. and Pedley, M. J. (1992) “Analysis for soil reinforcement with bending stiffness” J. Geotech. Engrg., Vol. 118, No. 10, pp. 1505-1528.

    26、 Juran, I. And Chen, C. L. (1989) “Strain compatibility design method for reinforced earth walls” J. Geotech. Engrg., ASCE, Vol. 115, No. 4, pp. 435-456.

    27、 Juran, I., Baudrand, G., Farrag, K. and Elias, V. (1990) “Design of soil nailed retaining structures” Proc. Design and Performance of Earth Retaining Structures, ASCE, Geotechnical Special Publication No. 25, pp. 644-659.

    28、 Koseki, J., Munaf, Y., Tatsuoka, F., Tateyama, M., Kojima, K. and Sato, T. (1998) “Shaking and tilting tests of geosynthetic-reinforced soil and conventional type retaining walls”, Geosynthetics International, Vol. 5, Nos. 1-2, pp. 73-96.

    29、 Matsuoka, H., Liu, S.H., and Ohashi, T.(1999) “Model test on granular soil slope and determination of strength parameters under low confining stresses slope surface.”,Slope Stability Engineering, pp. 681-686.

    30、 Matsuo, O., Tsutsumi, T., Yokoyama, K. and Saito, Y. (1998) “Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls”, Geosynthetics International, Vol.5, Nos.1-2, pp. 97-126.

    31、“Reinforcement of earth slopes and embankments” NCHRP Report 290, Transportation Research Board, Washing ton, D.C.

    32、 Richardson, G. N. and Lee, K. L. (1975) “Seismic design of reinforced earth walls” Journal of the Geotechnical Engineering Division, Proceedings of ASCE, Vol. 101, NO. GT2, pp. 167-188.

    33、 Rowe, P. W. (1962) “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact” Proceedings of the Royal Society of London, Series A, Vol. 269, pp. 500-527.

    34、 Rowe, P. W. (1969) “The relation between the shear strength of sands in triaxial compression, plane strain and direct shear” Geotechnique, Vol. 19, No. 1, pp. 75-86.

    35、 Shewbridge, S. E. and Sitar, N. (1990) “Deformation-based model for reinforced sand” J. Geotech. Engrg., ASCE, Vol. 116, No. 7, pp. 1153-1170.

    36、 Schlosser, F., Untereiner, P. and Plumelle, C. (1992) “French research program CLOUTERRE on soil nailing” Geotechnical Special Publication, No. 30, ASCE, New York, pp. 739-750.

    37、 Shen, C. K., Herrmann, L. R., Romstad, K. M., Bang, S., Kim, Y. S. and Denatale, J. S. (1981) “In situ earth reinforcement lateral support system” Report No. 81-03, Department of Civil Engineering, University of California at Davis.

    38、 Tatsuoka, F. Koseki, J., Tateyama, M., Munaf, Y., and Horii, K. (1998) : “Seismic stability against high seismic loads of geosynthetic-reinforced soil retaining structures”, Keynote Lecture, 6th Int. Conf. Geosynthetics, 1998, Atlanta, pp. 103-142.

    39、 Tatsuoka, F. (1993) “Roles of facing rigidity in soil reinforcing” Keynote Lecture, Proceedings of the International Symposium on Earth Reinforcement Practice, IS Kyushu ’92, Ochiai et al. (eds), Balkema, Rotterdam, 2, 831-870.

    40、 Tatsuoka, F., Tateyama, M. and Murata, O. (1989) “Earth retaining wall with a short geotextile and a rigid facing”, Proc. 12th Int. Conf. on SMFE, Rio de Janeiro, Vol.12, No.2, pp.1311-1314.

    41、 Terzaghi, K. and Peck, R.B. (1948) “Soil mechanics in engineering practice” John Wiley and sons.

    42、 Terzaghi, K. (1941) “General wedge theory of earth pressure” Transactions of the American Society of Civil Engineering, Vol. 67, No. 106, pp. 68-97.

    43、 Vidal, H. (1978). The development and future of reinforced earth. Proceedings of the Symposium on Earth Reinforcement, ASCE Annual Convention, Pittsburgh, PA, pp. 1-61.

    44、 Vucetic, M., Tufenkjian, M.R. Felio,G.Y., Barzar, P. and Chapman, K.R. (1997) “Analysis of soil-nailed excavations stability during the 1989 Loma Prieta earthquake in California” Report to NEHRP Congress : The Loma Prieta, California, Earthquake of October 17, 1989.

    45、 Whitman, R.V. (1990) “Seismic design and behavior of gravity retaining walls” Proc. Design and Performance of Earth Retaining Structures. Lambe, P.C. and Hansen, A. eds., ASCE, Reston, Va., 817-842.

    下載圖示 校內:立即公開
    校外:2008-08-29公開
    QR CODE