| 研究生: |
邱璵芩 Chiu, Yu-Chin |
|---|---|
| 論文名稱: |
部分亞硝化-厭氧氨氧化程序應用於海水養殖廢水循環系統 Partial Nitritation-Anammox Recirculating Systems for Aquaculture Wastewater |
| 指導教授: |
吳哲宏
Wu, Jer-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 養殖廢水循環系統 、除氮 、氨氧化古菌 、氨氧化細菌 、部分亞硝化-厭氧氨氧化程序 |
| 外文關鍵詞: | recirculating aquaculture systems, nitrogen removal, ammonia-oxidizing archaea, ammonia-oxidizing bacteria, partial nitritation-Anammox |
| 相關次數: | 點閱:138 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
室內養殖蝦水中高濃度硝酸氮累積可能會影響蝦體健康並造成水資源浪費與環境的負擔。傳統硝化脫硝程序應用於水產養殖循環系統難以克服養殖廢水特性,耗費大量能源與成本。因此本研究針對海水養殖廢水特性,設計水產養殖循環模型槽系統,優勢化氨氧化古菌與厭氧氨氧化菌,以部分氨氧化-厭氧氨氧化程序進行養殖廢水除氮處理,使養殖水循環再使用。首先,控制溶氧為本系統關鍵參數。因為系統的基質桶水力停留時間為兩天,高溶氧的蝦池水滯留於基質桶內時,溶氧藉由微生物被消耗掉,使進流至生物反應槽後的溶氧維持在<1 mg/L。反應槽內裝有自動監控系統,可將槽內溶氧環境控制在設定的範圍內。在兩生物反應槽中各裝填有145顆浮動式生物球,生物球中含有泡棉,使微生物得以附著生長後形成生物膜,生物膜外層直接接觸低溶氧廢水,而貧氧環境中氨氧化古菌對於氨氮的親和力較高,能與需氧較大的氨氧化細菌競爭並有效轉化氨氮,藉由氨氧化菌消耗掉氧氣後,泡棉中心更接近無氧的環境適合厭氧氨氧化菌生長,藉此透過溶氧控制及溶氧梯度設計優勢化目標菌群。另外,厭氧氨氧化菌為自營菌,可直接利用氨氮及亞硝酸並轉化為氮氣,不受養殖廢水低有機碳濃度的限制。而氨氧化古菌大量在海域環境被發現,厭氧氨氧化菌同樣有數個屬已知可適應於海水高鹽中,顯示其具有適應海水養殖廢水的能力。水產養殖循環系統連續操作五個月內,蝦池水中氨氮與亞酸酸氮濃度皆維持在0.5 mg/L以下,轉換率高達90%,硝酸氮累積速率僅為對照組蝦池的累積速率的2/3。根據即時聚合酶鏈式反應與次世代定序分析菌群的結果,槽內生物膜氨氧化古菌基因數量成長了16.4倍(A槽)與7.1倍(B槽),顯示低溶氧氨氧化策略的成功;偵測到Scalindua相關的16S rRNA序列證明水產養殖循環系統發生厭氧氨氧化脫氮的功能。連接水產養殖循環系統之蝦池菌相與對照組菌相的差異,暗示裝設本水產養殖循環系統可能對蝦池水中的菌群結構產生影響。本研究成功應用部分氨氧化-厭氧氨氧化程序於室內白蝦養殖的水循環處理,不僅大大減少養殖廢水的產生,亦節省大量曝氣成本與藥劑成本,此低成本省能源之養殖廢水除氮循環系統有助於發展養殖綠色產業鏈。
Aquaculture water purification in indoor shrimp farms usually focuses on the nitrification process, but the resulting nitrate accumulation can affect the health of sea animals, and cause eutrophication when discharging into the environment. The conventional nitrification-denitrification process is more energy-intensive. Therefore, the purpose of this study was to develop the partial nitritation-anammox process for the seawater recycling aquaculture system (RAS), and to explore the performance of the nitrogen removal function and the influence of the target microorganisms in the system. In this study, a seawater recycling aquaculture pilot system was established. The shrimp pond water was introduced to the system after the sludge acclimatized with synthetic wastewater. The nitrogen removal function of these systems had been assessed through water quality, quantitation of target microorganisms, and characterization of total bacterial flora in the system. The assessment of reactor performance showed that up to 90% ammonia nitrogen and nitrite had been removed. The system also maintained more stable ammonia nitrogen and nitrite concentration in shrimp ponds compared to the control group. The accumulation rate of nitrate was lower, as compared to the control group, and even a decrease in nitrate concentration has been observed. The results of quantitatibe PCR showed that the amount of ammonia-oxidizing archaea in the system sludge increased while the amount of ammonia-oxidizing bacteria decreased. Candidatus Scalindua-related 16S rRNA sequences were detected by high-through amplicon sequencing demonstrating the potential of anaerobic ammonium oxidation process. The differences of bacterial flora between the shrimp pond connected with RAS and the control shrimp pond suggested that the connection of this RAS system may change the bacterial community structure in the shrimp pond.
Alleman, J.E., 1985. Elevated nitrite occurrence in biological wastewater treatment systems. Water Sci. Technol. 17, 409–419.
Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., Srinath, E.G., 1976. Inhibition of nitrification by ammonia and nitrous acid. J. (Water Pollut. Control Fed. 835–852.
Bernet, N., Dangcong, P., Delgenès, J.-P., Moletta, R., 2001. Nitrification at low oxygen concentration in biofilm reactor. J. Environ. Eng. 127, 266–271.
Blackburne, R., Yuan, Z., Keller, J., 2008a. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19, 303–312.
Blackburne, R., Yuan, Z., Keller, J., 2008b. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Res. 42, 2166–2176.
Bothe, H., Jost, G., Schloter, M., Ward, B.B., Witzel, K.-P., 2000. Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24, 673–690. https://doi.org/10.1016/S0168-6445(00)00053-X
Bregnballe, J., 2015. A guide to Recirculation Aquaclture: An introduction to the new environmentlly friendly and highly productive closed fish farming systems. FAO Eurofish Rep. 100. https://doi.org/92-5-105177-1
Brewer, P.G., Riley, J.P., Skirrow, G., 1975. Chemical oceanography. Acad. Press. New York 1, 417.
Brown, M.N., Briones, A., Diana, J., Raskin, L., 2013. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system. FEMS Microbiol. Ecol. 83, 17–25. https://doi.org/10.1111/j.1574-6941.2012.01448.x
Caranto, J.D., Lancaster, K.M., 2018. Erratum: Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase (Proceedings of the National Academy of Sciences of the United States of America (2017) 17: 114 (8217-8222) DOI: 10.1073/pnas.1704504114). Proc. Natl. Acad. Sci. U. S. A. 115, E8325. https://doi.org/10.1073/pnas.1812827115
Cardona, E., Gueguen, Y., Magré, K., Lorgeoux, B., Piquemal, D., Pierrat, F., Noguier, F., Saulnier, D., 2016. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiol. 16, 1–9. https://doi.org/10.1186/s12866-016-0770-z
Chon, K., Chang, J.-S., Lee, E., Lee, J., Ryu, J., Cho, J., 2011. Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands. Ecol. Eng. 37, 64–69. https://doi.org/10.1016/j.ecoleng.2009.04.005
Christensen, M.H., Harremoes, P., 1977. Biological denitrification in water treatment. A Lit. Rev. Rep. 2–72.
Chuang, H.-P., Ohashi, A., Imachi, H., Tandukar, M., Harada, H., 2007. Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition. Water Res. 41, 295–302.
Čuhel, J., Šimek, M., 2011. Effect of pH on the denitrifying enzyme activity in pasture soils in relation to the intrinsic differences in denitrifier communities. Folia Microbiol. (Praha). 56, 230–235.
Dalsgaard, J., Lund, I., Thorarinsdottir, R., Drengstig, A., Arvonen, K., Pedersen, P.B., 2013. Farming different species in RAS in Nordic countries: Current status and future perspectives. Aquac. Eng. 53, 2–13. https://doi.org/10.1016/j.aquaeng.2012.11.008
Davidson, J., Good, C., Welsh, C., Summerfelt, S.T., 2014. Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems. Aquac. Eng. 59, 30–40.
Davidson, J., Good, C., Welsh, C., Summerfelt, S.T., 2011. Abnormal swimming behavior and increased deformities in rainbow trout Oncorhynchus mykiss cultured in low exchange water recirculating aquaculture systems. Aquac. Eng. 45, 109–117.
Desloover, J., DeClippeleir, H., Boeckx, P., DuLaing, G., Colsen, J., Verstraete, W., Vlaeminck, S.E., 2011. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Res. 45, 2811–2821.
Ehrich, S., Behrens, D., Lebedeva, E., Ludwig, W., Bock, E., 1995. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol. 164, 16–23.
Erguder, T.H., Boon, N., Vlaeminck, S.E., Verstraete, W., 2008. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor. Environ. Sci. Technol. 42, 8715–8720.
FAO, IFAD, UNICEF, WFP, WHO, 2018. The State of Food Security and Nutrition in the World 2018. Building Climate Resilience for Food Security and Nutrition. State Food Secur. Nutr. World 2018 Build. Clim. Resil. Food Secur. Nutr.
Figueroa, L.A., Silverstein, J., 1992. The effect of particulate organic matter on biofilm nitrification. Water Environ. Res. 64, 728–733. https://doi.org/10.2175/wer.64.5.10
Ford, D.L., Churchwell, R.L., Kachtick, J.W., 1980. Comprehensive analysis of nitrification of chemical processing wastewaters. J. (Water Pollut. Control Fed. 2726–2746.
Furukawa, K., Lieu, P.K., Tokitoh, H., Fujii, T., 2006. Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances, Water Science and Technology. https://doi.org/10.2166/wst.2006.175
Geets, J., DeCooman, M., Wittebolle, L., Heylen, K., Vanparys, B., DeVos, P., Verstraete, W., Boon, N., 2007. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl. Microbiol. Biotechnol. 75, 211–221. https://doi.org/10.1007/s00253-006-0805-8
Gilbert, E.M., Agrawal, S., Karst, S.M., Horn, H., Nielsen, P.H., Lackner, S., 2014. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater. Environ. Sci. Technol. 48, 8784–8792. https://doi.org/10.1021/ES501649M/SUPPL_FILE/ES501649M_SI_001.PDF
Goreau, T.J., Kaplan, W.A., Wofsy, S.C., McElroy, M.B., Valois, F.W., Watson, S.W., 1980. Production of NO2-and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40, 526–532.
Hallin, S., Jones, C.M., Schloter, M., Philippot, L., 2009. Relationship between n-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J. 3, 597–605. https://doi.org/10.1038/ismej.2008.128
Hanaki, K., Wantawin, C., Ohgaki, S., 1990. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res. 24, 297–302.
Hayatsu, M., Tago, K., Saito, M., 2008. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 54, 33–45. https://doi.org/10.1111/j.1747-0765.2007.00195.x
Hellinga, C., VanLoosdrecht, M.C.M., Heijnen, J.J., 1999. Model based design of a novel process for nitrogen removal from concentrated flows. Math. Comput. Model. Dyn. Syst. 5, 351–371.
Hendrickx, T.L.G., Wang, Y., Kampman, C., Zeeman, G., Temmink, H., Buisman, C.J.N., 2012. Autotrophic nitrogen removal from low strength waste water at low temperature. Water Res. 46, 2187–2193.
Jenni, S., Vlaeminck, S.E., Morgenroth, E., Udert, K.M., 2014. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios. Water Res. 49, 316–326.
Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M., vanLoosdrecht, M.C.M., 2009. Nitrous oxide emission during wastewater treatment. Water Res. 43, 4093–4103.
Kartal, B., Kuenen, J.G.v, VanLoosdrecht, M.C.M., 2010. Sewage treatment with anammox. Science (80-. ). 328, 702–703.
Kester, R.A., DeBoer, W., Laanbroek, H.J., 1997. Production of NO and N (inf2) O by Pure Cultures of Nitrifying and Denitrifying Bacteria during Changes in Aeration. Appl. Environ. Microbiol. 63, 3872–3877.
Kim, D.-J., Lee, D.-I., Keller, J., 2006. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour. Technol. 97, 459–468.
Kindaichi, T., Okabe, S., Satoh, H., Watanabe, Y., 2004. Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Sci. Technol. 49, 61–68.
Knowles, G., Downing, A.L., Barrett, M.J., 1965. Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. Microbiology 38, 263–278.
Knowles, R., 1982. Denitrification. Microbiol. Rev. 46, 43–70. https://doi.org/10.1128/mmbr.46.1.43-70.1982
Koops, H.P., Pommerening-Röser, A., 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1–9. https://doi.org/10.1016/S0168-6496(01)00137-4
Kowalchuk, G.A., Stephen, J.R., 2001. Ammonia-oxidizing bacteria: A model for molecular microbial ecology, Annual Review of Microbiology. https://doi.org/10.1146/annurev.micro.55.1.485
Kruse, M., Keuter, S., Bakker, E., Spieck, E., Eggers, T., Lipski, A., 2013. Relevance and Diversity of Nitrospira Populations in Biofilters of Brackish RAS. PLoS One 8. https://doi.org/10.1371/journal.pone.0064737
Kuenen, J.G., 2008. Anammox bacteria: from discovery to application. Nat. Rev. Microbiol. 6, 320–326.
Kuhn, D.D., Smith, S.A., Boardman, G.D., Angier, M.W., Marsh, L., Flick, G.J., 2010. Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: Impacts on survival, growth, antennae length, and pathology. Aquaculture 309, 109–114. https://doi.org/10.1016/j.aquaculture.2010.09.014
Kumar, V.J.R., Joseph, V., Philip, R., Singh, I.S.B., 2010. Nitrification in brackish water recirculating aquaculture system integrated with activated packed bed bioreactor, Water Science and Technology. https://doi.org/10.2166/wst.2010.849
Laanbroek, H.J., Bodelier, P.L.E., Gerards, S., 1994. Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Arch. Microbiol. 161, 156–162.
Laanbroek, H.J., Gerards, S., 1993. Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures. Arch. Microbiol. 159, 453–459.
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., Schleper, C., 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nat. 2006 4427104 442, 806–809. https://doi.org/10.1038/nature04983
Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F., Chen, Y.M., Shih, K.C., 2005. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ. Pollut. 134, 411–421. https://doi.org/10.1016/j.envpol.2004.09.015
Luo, G., Xu, G., Gao, J., Tan, H., 2016. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors. J. Environ. Sci. (China) 43, 147–152. https://doi.org/10.1016/j.jes.2015.10.022
Ma, B., Wang, S., Cao, S., Miao, Y., Jia, F., Du, R., Peng, Y., 2016. Biological nitrogen removal from sewage via anammox: Recent advances. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2015.10.074
Martins, C.I.M., Eding, E.H., Verdegem, M.C.J., Heinsbroek, L.T.N., Schneider, O., Blancheton, J.P., d’Orbcastel, E.R., Verreth, J.A.J., 2010. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 43, 83–93. https://doi.org/10.1016/j.aquaeng.2010.09.002
Metcalf & Eddy, Burton, F.L., Stensel, H.D., Tchobanoglous, G., 2003. Wastewater engineering: treatment and reuse. McGraw Hill.
Mulder, A., Van deGraaf, A.A., Robertson, L.A., Kuenen, J.G., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177–183.
Nilsson, I., Ohlson, S., 1982. Columnar denitrification of water by immobilized Pseudomonas denitrificans cells. Eur. J. Appl. Microbiol. Biotechnol. 14, 86–90. https://doi.org/10.1007/BF00498008
Painter, H.A., Loveless, J.E., 1983. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. Water Res. 17, 237–248.
Paliy, O., Shankar, V., 2016. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057. https://doi.org/10.1111/mec.13536
Park, H.D., Wells, G.F., Bae, H., Griddle, C.S., Francis, C.A., 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 72, 5643–5647. https://doi.org/10.1128/AEM.00402-06
Peng, Y.Z., Li, Y.Z., Peng, C.Y., Wang, S.Y., 2004. Nitrogen removal from pharmaceutical manufacturing wastewater with high concentration of ammonia and free ammonia via partial nitrification and denitrification. Water Sci. Technol. 50, 31–36.
Pérez, J., Lotti, T., Kleerebezem, R., Picioreanu, C., vanLoosdrecht, M.C.M., 2014. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study. Water Res. 66, 208–218. https://doi.org/10.1016/J.WATRES.2014.08.028
Rittmann, B.E., McCarty, P.L., 2001. Environmental biotechnology: principles and applications. McGraw-Hill Education.
Ruiz, G., Jeison, D., Chamy, R., 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 37, 1371–1377.
Rurangwa, E., Verdegem, M.C.J., 2015. Microorganisms in recirculating aquaculture systems and their management. Rev. Aquac. 7, 117–130. https://doi.org/10.1111/raq.12057
Rusten, B., 1989. Start-feeding of Atlantic salmon in a water recycling plant. Aquac. Eng. 8, 241–256. https://doi.org/10.1016/0144-8609(89)90012-5
Sarner, E., Marklund, S., 1985. Influence of particulate organics on the removal of dissolved organics in fixed-film biological reactors. Water Sci. Technol. 17, 15–26. https://doi.org/10.2166/wst.1985.0116
Schreier, H.J., Mirzoyan, N., Saito, K., 2010. Microbial diversity of biological filters in recirculating aquaculture systems. Curr. Opin. Biotechnol. 21, 318–325. https://doi.org/10.1016/j.copbio.2010.03.011
Sharma, B., Ahlert, R.C., 1977. Nitrification and nitrogen removal. Water Res. 11, 897–925.
Sharrer, M.J., Summerfelt, S.T., Bullock, G.L., Gleason, L.E., Taeuber, J., 2005. Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system. Aquac. Eng. 33, 135–149. https://doi.org/10.1016/j.aquaeng.2004.12.001
Shi, Y., Zhang, G., Liu, J., Zhu, Y., Xu, J., 2011. Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp growout systems. Bioresour. Technol. 102, 9416–9424. https://doi.org/10.1016/j.biortech.2011.07.058
Siegrist, H., Salzgeber, D., Eugster, J., Joss, A., 2008. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Sci. Technol. 57, 383–388.
Sims, A., Horton, J., Gajaraj, S., McIntosh, S., Miles, R.J., Mueller, R., Reed, R., Hu, Z., 2012. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands. Water Res. 46, 4121–4129. https://doi.org/10.1016/J.WATRES.2012.05.007
Sliekers, A.O., Haaijer, S.C.M., Stafsnes, M.H., Kuenen, J.G., Jetten, M.S.M., 2005. Competition and coexistence of aerobic ammonium-and nitrite-oxidizing bacteria at low oxygen concentrations. Appl. Microbiol. Biotechnol. 68, 808–817.
Stahl, D.A., DeLa Torre, J.R., 2012. Physiology and Diversity of Ammonia-Oxidizing Archaea. http://dx.doi.org/10.1146/annurev-micro-092611-150128 66, 83–101. https://doi.org/10.1146/ANNUREV-MICRO-092611-150128
Stüven, R., Vollmer, M., Bock, E., 1992. The impact of organic matter on nitric oxide formation by Nitrosomonas europaea. Arch. Microbiol. 158, 439–443.
Tal, Y., Watts, J.E.M., Schreier, H.J., 2006. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system. Appl. Environ. Microbiol. 72, 2896–2904.
Tal, Y., Watts, J.E.M., Schreier, S.B., Sowers, K.R., Schreier, H.J., 2003. Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system. Aquaculture 215, 187–202.
Throbäck, I.N., Enwall, K., Jarvis, A., Hallin, S., 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49, 401–417. https://doi.org/10.1016/j.femsec.2004.04.011
Tiedje, J.M., Sexstone, A.J., Myrold, D.D., Robinson, J.A., 1983. Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek 48, 569–583. https://doi.org/10.1007/BF00399542
Tokutomi, T., Kiyokawa, T., Shibayama, C., Harada, H., Ohashi, A., 2006. Effect of inorganic carbon on nitrite accumulation in an aerobic granule reactor. Water Sci. Technol. 53, 285–294.
Tokutomi, T., Shibayama, C., Soda, S., Ike, M., 2010. A novel control method for nitritation: the domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor. Water Res. 44, 4195–4203.
Tseng, K.-F., Su, H.-M., Su, M.-S., 1998. Culture of Penaeus monodon in a recirculating system. Aquac. Eng. 17, 138–147. https://doi.org/10.1016/S0144-8609(98)00011-9
Turk, O., Mavinic, D.S., 1989. Maintaining nitrite build-up in a system acclimated to free ammonia. Water Res. 23, 1383–1388.
Van deGraaf, A.A., Mulder, A., deBruijn, P., Jetten, M.S., Robertson, L.A., Kuenen, J.G., 1995. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246–1251.
Van DenHende, S., Laurent, C., Bégué, M., 2015. Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: Need for a biorefinery. Bioresour. Technol. 196, 184–193. https://doi.org/10.1016/j.biortech.2015.07.058
vanKessel, M.A.H.J., Harhangi, H.R., van dePas-Schoonen, K., van deVossenberg, J., Flik, G., Jetten, M.S.M., Klaren, P.H.M., denCamp, H.J.M.O., 2010. Biodiversity of N-cycle bacteria in nitrogen removing moving bed biofilters for freshwater recirculating aquaculture systems. Aquaculture 306, 177–184.
VanRijn, J., Tal, Y., Schreier, H.J., 2006. Denitrification in recirculating systems: theory and applications. Aquac. Eng. 34, 364–376.
Verstraete, W., Philips, S., 1998. Nitrification-denitrification processes and technologies in new contexts. Environ. Pollut. 102, 717–726. https://doi.org/10.1016/S0269-7491(98)80104-8
Wang, Shanyun, Peng, Y., Ma, B., Wang, Shuying, Zhu, G., 2015. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: widespread but overlooked. Water Res. 84, 66–75.
Wang, W.N., Zhou, J., Wang, P., Tian, T.T., Zheng, Y., Liu, Y., Mai, W. jun, Wang, A.L., 2009. Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress. Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 150, 428–435. https://doi.org/10.1016/j.cbpc.2009.06.010
Wiesmann, U., 1994. Biological nitrogen removal from wastewater. Biotechnics/wastewater 113–154.
Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., VanBleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G.J., Middelburg, J.J., Schouten, S., Damsté, J.S.S., 2006. Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. 103, 12317–12322. https://doi.org/10.1073/PNAS.0600756103
Wyffels, S., VanHulle, S.W.H., Boeckx, P., Volcke, E.I.P., Cleemput, O.Van, Vanrolleghem, P.A., Verstraete, W., 2004. Modeling and simulation of oxygen‐limited partial nitritation in a membrane‐assisted bioreactor (MBR). Biotechnol. Bioeng. 86, 531–542.
Yuan, Q., Oleszkiewicz, J.A., 2011. Low temperature biological phosphorus removal and partial nitrification in a pilot sequencing batch reactor system. Water Sci. Technol. 63, 2802–2807.
Zhang, L., Yang, J., Furukawa, K., 2010. Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox. J. Biosci. Bioeng. 110, 441–448.
Zhu, G., Wang, S., Wang, W., Wang, Y., Zhou, L., Jiang, B., Op den Camp, H.J.M., Risgaard-Petersen, N., Schwark, L., Peng, Y., 2013. Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces. Nat. Geosci. 6, 103–107.
吳國霖, 2000. 循環水養鰻系統中生物濾床除氨效率週期性變動影響因素之研究 - The periodic variation of ammonia removal efficiency and its influence factors of a biofilter in a recirculating eel culture system. 水產養殖學系. 國立海洋大學, 基隆市.
施曼, 张维国, 李江叶, 严少华, 高岩, 2018. CO2 浓度升高对水体硝化, 反硝化作用的影响研究进展. 应用生态学报 29, 4239–4247.