簡易檢索 / 詳目顯示

研究生: 何浩瑋
Ho, Hao-Wei
論文名稱: 以仿生物礦化法製備二氧化鈦保護層修飾氧化亞銅應用於光電化學產氫之研究
Synthesis of TiO2 Protection Layers on Cu2O by a Biomineralization-mimetic Method for Photoelectrochemical Hydrogen Evolution
指導教授: 賴怡璇
Lai, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 99
中文關鍵詞: 光電化學水分解氧化亞銅生物礦化法逐層自主裝混合微波退火
外文關鍵詞: Photoelectrochemical Water Splitting, Cu2O, Biomineralization, Layer-by-layer Self-assemble, Hybrid Microwave Annealing
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電化學水分解系統被視為一可持續產生氫氣的環境友善製程,然而許多銅基光陰極因電化學腐蝕問題而面臨了極大的水溶液不穩定性。因此,利用物化性相對穩定的二氧化鈦進行電極修飾,是提高光電極穩定性最有用的策略之一。
    本研究演示了一種簡單且可調控厚度的保護層形成方法,因生物礦化法製程僅需利用材料本身的靜電力吸引進行逐層自組裝,因此適合應用於銅基光陰極的保護層修飾。眾所周知,氧化亞銅面臨著嚴重的電化學腐蝕問題,而生物礦化法所形成的二氧化鈦保護層可以有效的防止電解液與材料直接接觸,降低了氧化亞銅因電化學腐蝕所產生的電流下降;在退火製程的選擇上,我們分別使用管狀爐進行傳統退火和家用微波爐進行混合微波退火,因微波退火條件於大氣環境,氧原子除了參與有機物的熱裂解,也會與氧化亞銅反應形成氧化銅。
    在第一部分中,本研究利用化學腐蝕與電化學方法,探討了生物礦化法與管狀爐退火產生的TiO2 保護層對於電極穩定性的提升。在第二部份我們利用生物礦化法與混合微波退火修飾了平面結構氧化亞銅,修飾後的平面結構氧化亞銅在0.2 V (vs. RHE)偏壓下照光一小時後,其光電流衰減大幅降低;且在循環伏安法中的腐蝕電流也隨之降低,顯示光電化學穩定性的提升。本研究利用穿透式電子顯微鏡證實了TiO2保護層的存在;此外,由光激發光譜可以觀察出修飾後的電極具有低缺陷且光生載子複合降低的特性,與莫特-肖特基結果中的載子濃度上升可以相呼應。此種方法為價格昂貴的原子層沉積技術提供了一個有前景的替代方法。

    Photoelectrochemical(PEC) water splitting system is regarded as an environmentally friendly process for sustainable hydrogen production. However, many copper-based photocathodes suffer from severe instability due to electrochemical corrosion issue. Therefore, modification of chemically and physically stable materials, such as TiO2, is one of the most useful strategies to improve the stability of photoelectrodes.
    In this study, we demonstrate a simple and thickness adjustable method of protection layers formation. The biomineralization technique only needs the electrostatic attraction between materials for layer-by-layer self-assemble, so it can be easily applied to the protection layers modification of copper-based photocathode. As we all know, cuprous oxide faces severe electrochemical corrosion issue. The titanium dioxide protection layers formed by biomineralization can efficiently prevent the electrode from contacting the electrolyte directly and reduce the current losses from electrochemical corrosion. In the selection of the annealing process, we use tube furnace to perform a conventional annealing process and household microwave oven to perform a hybrid microwave annealing, respectively. Because of the atmospheric microwave annealing condition, the oxygen atoms are not only involved in the pyrolysis of organic compounds but also react with cuprous oxide to form cupric oxide.
    In the first part, chemical corrosion and electrochemical methods were used to study the electrode stability improvement of TiO2 protection layers formed by the biomineralization method and a tube furnace annealing process. In the second part, we modified the planar Cu2O by the biomineralization method and a hybrid microwave annealing process. The photocurrent reduction of modified Cu2O greatly reduces after one hour irradiation at a 0.2 V(vs. RHE) bias and the corrosion current in cyclic voltammetry results is also reduced. In this study, the transmission electron microscope(TEM) is used to confirm the existence of TiO2 protection layers. In addition, low defect states and the reduction of photogenerated carrier recombination of modified Cu2O can be observed from the photoluminescence spectroscopy(PL), which are consistent with the increase of carrier concentration in Mott-Schottky results. This developed technique offers a promising alternative way to expensive atomic layer deposition technique.

    摘要 i 致謝 xi 總目錄 xii 表目錄 xv 圖目錄 xvi 第一章 緒論 1 1-1 前言 1 1-2 光電化學水分解系統機制與裝置 2 1-3 光電化學水分解觸媒設計 3 1-4 研究動機 7 第二章 文獻回顧 8 2-1 氧化亞銅的基本性質 8 2-1-1氧化亞銅的材料結構與光電性質 8 2-1-2 氧化亞銅的限制 9 2-1-3 氧化亞銅的製備方式 11 2-2 氧化亞銅的保護層與修飾 13 2-3 生物礦化法與逐層自主裝 16 2-4 混合微波退火 18 2-5 研究與實驗設計 20 第三章 實驗方法與步驟 21 3-1 藥品 21 3-1-1 FTO導電玻璃清洗 21 3-1-2 銅箔導電基板清洗 21 3-1-3 奈米結構氧化亞銅製備 21 3-1-4 平面結構氧化亞銅製備 21 3-1-5 二氧化鈦保護層製備 22 3-1-6 氧化鎳共觸媒製備 22 3-1-7 自硫化硫化銅共觸媒製備 22 3-1-8光電化學水分解系統 22 3-2 實驗步驟 23 3-3 光電化學水分解系統 25 3-4 材料分析 26 3-4-1 多功能環境場發掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 26 3-4-2 能量色散X射線譜(Energy-Dispersive X-ray Spectroscopy, EDX) 26 3-4-3 高溫二維X-ray廣角繞射儀(X-ray Diffractometer, XRD) 27 3-4-4 紫外光/可見光分光光譜儀(Ultraviolet–Visible Spectroscopy, UV/Vis) 28 3-4-5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 28 3-4-6 微拉曼及光激發光譜儀(Micro-Raman & Photoluminescence Spectrometer, PL) 29 第四章 結果與討論 30 4-1 氧化亞銅的基本性質與材料分析 30 4-2 逐層自組裝二氧化鈦保護層修飾與管狀爐退火 37 4-2-1 材料分析 37 4-2-2 光電化學表現與共觸媒修飾 42 4-3 逐層自組裝二氧化鈦保護層修飾與混合微波退火 47 4-3-1 材料分析 47 4-3-2 光電化學表現 63 4-3-3 共觸媒與自硫化共觸媒修飾 63 第五章 結論 80 第六章 參考資料 81 第七章 補充資料 92 第八章 未來工作 99

    1. Pan, L.; Kim, J. H.; Mayer, M. T.; Son, M.-K.; Ummadisingu, A.; Lee, J. S.; Hagfeldt, A.; Luo, J.; Grätzel, M., Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nature Catalysis 2018, 1 (6), 412-420.
    2. Höök, M.; Tang, X., Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797-809.
    3. Bentley, R.; Boyle, G., Global Oil Production: Forecasts and Methodologies. Environment and Planning B: Planning and Design 2008, 35 (4), 609-626.
    4. Belyakov, N., Solar energy. In Sustainable Power Generation, 2019; pp 417-438.
    5. Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A. A.; Kim, K.-H., Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews 2018, 82, 894-900.
    6. Marwat, M. A.; Humayun, M.; Afridi, M. W.; Zhang, H.; Abdul Karim, M. R.; Ashtar, M.; Usman, M.; Waqar, S.; Ullah, H.; Wang, C.; Luo, W., Advanced Catalysts for Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2021, 4 (11), 12007-12031.
    7. Thapa, B. S.; Thapa, B., Green Hydrogen as a Future Multi-disciplinary Research at
    Kathmandu University. Journal of Physics: Conference Series 2020, 1608 (012020).
    8. Li, Z.; Zhang, W.; Zhang, R.; Sun, H., Development of renewable energy multi-energy complementary hydrogen energy system (A Case Study in China): A review. Energy Exploration & Exploitation 2020, 38 (6), 2099-2127.
    9. Landman, A.; Halabi, R.; Dias, P.; Dotan, H.; Mehlmann, A.; Shter, G. E.; Halabi, M.; Naseraldeen, O.; Mendes, A.; Grader, G. S.; Rothschild, A., Decoupled Photoelectrochemical Water Splitting System for Centralized Hydrogen Production. Joule 2020, 4 (2), 448-471.
    10. Takanabe, K., Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catalysis 2017, 7 (11), 8006-8022.
    11. Dhingra, P.; Singh, P.; Rana, P. J. S.; Garg, A.; Kar, P., Hole-Transporting Materials for Perovskite-Sensitized Solar Cells. Energy Technology 2016, 4 (8), 891-938.
    12. Salehmin, M. N. I.; Jeffery Minggu, L.; Mark-Lee, W. F.; Mohamed, M. A.; Arifin, K.; Jumali, M. H. H.; Kassim, M. B., Highly photoactive Cu2O nanowire film prepared with modified scalable synthesis method for enhanced photoelectrochemical performance. Solar Energy Materials and Solar Cells 2018, 182, 237-245.
    13. Leblebici, S. Y.; Chen, T. L.; Olalde-Velasco, P.; Yang, W.; Ma, B., Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells. ACS Applied Materials & Interfaces 2013, 5 (20), 10105-10.
    14. Weiss, T. P.; Bissig, B.; Feurer, T.; Carron, R.; Buecheler, S.; Tiwari, A. N., Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time-resolved photoluminescence measurements. Scientific Reports 2019, 9 (1), 5385.
    15. Liang, H.; Guo, J.; Zhou, Y.-X.; Wang, Z.-Y.; Feng, J.; Ge, Z.-H., CuPbBi5S9 thermoelectric material with an intrinsic low thermal conductivity: Synthesis and properties. Journal of Materiomics 2022, 8 (1), 174-183.
    16. Zhang, M.; Wang, J.; Xue, H.; Zhang, J.; Peng, S.; Han, X.; Deng, Y.; Hu, W., Acceptor-Doping Accelerated Charge Separation in Cu2O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angewandte Chemie International Edition 2020, 59 (42), 18463-18467.
    17. Mary, A. S.; Murugan, C.; Pandikumar, A., Uplifting the charge carrier separation and migration in Co-doped CuBi2O4/TiO2 p-n heterojunction photocathode for enhanced photoelectrocatalytic water splitting. Journal of Colloid and Interface Science 2022, 608 (Pt 3), 2482-2492.
    18. Ding, C.; Shi, J.; Wang, Z.; Li, C., Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis 2016, 7 (1), 675-688.
    19. Xu, X. T.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J., Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. Advanced Science (Weinh) 2019, 6 (2), 1801505.
    20. Luo, J.; Steier, L.; Son, M. K.; Schreier, M.; Mayer, M. T.; Gratzel, M., Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. Nano Letters 2016, 16 (3), 1848-57.
    21. Paracchino, A.; Laporte, V.; Sivula, K.; Gratzel, M.; Thimsen, E., Highly active oxide photocathode for photoelectrochemical water reduction. Nature Materials 2011, 10 (6), 456-61.
    22. Azevedo, J.; Tilley, S. D.; Schreier, M.; Stefik, M.; Sousa, C.; Araújo, J. P.; Mendes, A.; Grätzel, M.; Mayer, M. T., Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy 2016, 24, 10-16.
    23. Chen, D.; Liu, Z.; Guo, Z.; Yan, W.; Ruan, M., Decorating Cu2O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. Chemical Engineering Journal 2020, 381.
    24. Dubale, A. A.; Tamirat, A. G.; Chen, H.-M.; Berhe, T. A.; Pan, C.-J.; Su, W.-N.; Hwang, B.-J., A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction. Journal of Materials Chemistry A 2016, 4 (6), 2205-2216.
    25. Bai, Z.; Liu, J.; Zhang, Y.; Huang, Z.; Gao, Y.; Li, X.; Du, Y., Unassisted solar water splitting using a Cu2O/Ni(OH)2-ZnO/Au tandem photoelectrochemical cell. Journal of Solid State Electrochemistry 2019, 24 (2), 321-328.
    26. Jin, J.; Walczak, K.; Singh, M. R.; Karp, C.; Lewis, N. S.; Xiang, C., An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy & Environmental Science journal 2014, 7 (10), 3371-3380.
    27. Bagal, I. V.; Chodankar, N. R.; Hassan, M. A.; Waseem, A.; Johar, M. A.; Kim, D.-H.; Ryu, S.-W., Cu2O as an emerging photocathode for solar water splitting - A status review. International Journal of Hydrogen Energy 2019, 44 (39), 21351-21378.
    28. Matsuzaki, K.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H., Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Applied Physics Letters 2008, 93 (20).
    29. Wang, Y.; Miska, P.; Pilloud, D.; Horwat, D.; Mücklich, F.; Pierson, J. F., Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing. Journal of Applied Physics 2014, 115 (7).
    30. Moharam, M. M.; Elsayed, E. M.; Nino, J. C.; Abou-Shahba, R. M.; Rashad, M. M., Potentiostatic deposition of Cu2O films as p-type transparent conductors at room temperature. Thin Solid Films 2016, 616, 760-766.
    31. Dolai, S.; Das, S.; Hussain, S.; Bhar, R.; Pal, A. K., Cuprous oxide (Cu2O) thin films prepared by reactive d.c. sputtering technique. Applied Physics Letters 2017, 141, 296-306.
    32. Matsuzaki, K.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H., Effects of post-annealing on (110) Cu2O epitaxial films and origin of low mobility in Cu2O thin-film transistor. Physica Status Solidi (A) 2009, 206 (9), 2192-2197.
    33. Chen, K.; Sun, C.; Song, S.; Xue, D., Polymorphic crystallization of Cu2O compound. CrystEngComm 2014, 16 (24), 5257-5267.
    34. Jin, Z.; Hu, Z.; Yu, J. C.; Wang, J., Room temperature synthesis of a highly active Cu/Cu2O photocathode for photoelectrochemical water splitting. Journal of Materials Chemistry A 2016, 4 (36), 13736-13741.
    35. Xu, Q.; Qian, X.; Qu, Y.; Hang, T.; Zhang, P.; Li, M.; Gao, L., Electrodeposition of Cu2O Nanostructure on 3D Cu Micro-Cone Arrays as Photocathode for Photoelectrochemical Water Reduction. Journal of The Electrochemical Society 2016, 163 (10), H976-H981.
    36. McShane, C. M.; Choi, K. S., Junction studies on electrochemically fabricated p-n Cu2O homojunction solar cells for efficiency enhancement. Physical Chemistry Chemical Physics 2012, 14 (17), 6112-8.
    37. Aguirre, M. E.; Zhou, R.; Eugene, A. J.; Guzman, M. I. Grela, M. A., Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Applied Catalysis B: Environmental 2017, 217, 485-493.
    38. Kim, D. S.; Kim, Y. B.; Jung, S. H.; Deshpande, N. G.; Choi, J. H.; Lee, H. S.; Cho, H. K., Atomically tunable photo-assisted electrochemical oxidation process design for the decoration of ultimate-thin CuO on Cu2O photocathodes and their enhanced photoelectrochemical performances. Journal of Materials Chemistry A 2020, 8 (41), 21744-21755.
    39. Das, C.; Ananthoju, B.; Dhara, A. K.; Aslam, M.; Sarkar, S. K.; Balasubramaniam, K. R., Electron-Selective TiO2 /CVD-Graphene Layers for Photocorrosion Inhibition in Cu2
    O Photocathodes. Advanced Materials Interfaces 2017, 4 (17).
    40. McShane, C. M.; Siripala, W. P.; Choi, K.-S., Effect of Junction Morphology on the Performance of Polycrystalline Cu2O Homojunction Solar Cells. The Journal of Physical Chemistry Letters 2010, 1 (18), 2666-2670.
    41. Matthew J. Siegfried, K.-S. C., Effect of Junction Morphology on the Performance of
    Polycrystalline Cu2O Homojunction Solar Cells. Journal of the American Chemical Society 2006, 128 (32), 10356-10357.
    42. Tilley, S. D.; Schreier, M.; Azevedo, J.; k, M. S.; Graetzel, M., Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water-Splitting Photocathodes. Advanced Functional Materials 2014, 24, 303-311.
    43. Wang, Y.; Cao, S.; Huan, Y.; Nie, T.; Ji, Z.; Bai, Z.; Cheng, X.; Xi, J.; Yan, X., The effect of composite catalyst on Cu2O/TiO2 heterojunction photocathodes for efficient water splitting. Applied Surface Science 2020, 526.
    44. Pan, L.; Liu, Y.; Yao, L.; Dan, R.; Sivula, K.; Gratzel, M.; Hagfeldt, A., Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nature Communications 2020, 11 (1), 318.
    45. Kim, J. S.; Cho, S. W.; Deshpande, N. G.; Kim, Y. B.; Yun, Y. D.; Jung, S. H.; Kim, D. S.; Cho, H. K., Toward Robust Photoelectrochemical Operation of Cuprous Oxide Nanowire Photocathodes Using a Strategically Designed Solution-Processed Titanium Oxide Passivation Coating. ACS Applied Materials & Interfaces 2019, 11 (16), 14840-14847.
    46. Yang, Y.; Xu, D.; Wu, Q.; Diao, P., Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction. Scientific Reports 2016, 6, 35158.
    47. Kunturu, P. P.; Huskens, J., Efficient Solar Water Splitting Photocathodes Comprising a Copper Oxide Heterostructure Protected by a Thin Carbon Layer. ACS Applied Energy Materials 2019, 2 (11), 7850-7860.
    48. Baek, S. K.; Kim, J. S.; Yun, Y. D.; Kim, Y. B.; Cho, H. K., Cuprous/Cupric Heterojunction Photocathodes with Optimal Phase Transition Interface via Preferred Orientation and Precise Oxidation. ACS Sustainable Chemistry & Engineering 2018, 6 (8), 10364-10373.
    49. Baek, S. K.; Kim, J. S.; Kim, Y. B.; Yoon, J. H.; Lee, H.-B.-R.; Cho, H. K., Dual Role of Sb-Incorporated Buffer Layers for High Efficiency Cuprous Oxide Photocathodic Performance: Remarkably Enhanced Crystallinity and Effective Hole Transport. ACS Sustainable Chemistry & Engineering 2017, 5 (9), 8213-8221.
    50. Cao, S.; Kang, Z.; Yu, Y.; Du, J.; German, L.; Li, J.; Yan, X.; Wang, X.; Zhang, Y., Tailored TiO2 Protection Layer Enabled Efficient and Stable Microdome Structured p‐GaAs Photoelectrochemical Cathodes. Advanced Energy Materials 2020, 10 (9).
    51. Saari, J.; Ali-Loytty, H.; Honkanen, M.; Tukiainen, A.; Lahtonen, K.; Valden, M., Interface Engineering of TiO2 Photoelectrode Coatings Grown by Atomic Layer Deposition on Silicon. ACS Omega 2021, 6 (41), 27501-27509.
    52. Cui, F.; Zhang, Y.; Fonseka, H. A.; Promdet, P.; Channa, A. I.; Wang, M.; Xia, X.; Sathasivam, S.; Liu, H.; Parkin, I. P.; Yang, H.; Li, T.; Choy, K. L.; Wu, J.; Blackman, C.; Sanchez, A. M.; Liu, H., Robust Protection of III-V Nanowires in Water Splitting by a Thin Compact TiO2 Layer. ACS Applied Materials & Interfaces 2021, 13 (26), 30950-30958.
    53. Jiang, Y.; Yang, D.; Zhang, L.; Li, L.; Sun, Q.; Zhang, Y.; Li, J.; Jiang, Z., Biomimetic synthesis of titania nanoparticles induced by protamine. Dalton Transactions 2008, (31), 4165-71.
    54. Wang, X.; Yan, Y.; Hao, B.; Chen, G., Protein-mediated layer-by-layer synthesis of TiO2(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery. ACS Applied Materials & Interfaces 2013, 5 (9), 3631-7.
    55. Yu, B.; Liu, J.; Liu, S.; Zhou, F., Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chemical communications (Cambridge, England) 2010, 46 (32), 5900-2.
    56. Lai, Y.-H.; Lai, Y.-J.; Yen, C.-Y.; Chuang, P.-C., A scalable and biomimetic approach for TiO2 deposition: enabling water splitting by nanostructured WO3 in neutral media as an example. Sustainable Energy & Fuels 2020, 4 (10), 5005-5008.
    57. Anik, M.; Cansizoglu, T., Dissolution kinetics of WO3 in acidic solutions. Journal of Applied Electrochemistry 2006, 36, 603–608.
    58. Lillard, R. S.; Kanner, G. S.; Butt, D. P., The Nature of Oxide Films on Tungsten in Acidic and Alkaline Solutions. Journal of The Electrochemical Society 1998, 145, 2718–2725.
    59. Kim, J. H.; Jang, Y. J.; Choi, S. H.; Lee, B. J.; Lee, M. H.; Lee, J. S., Hybrid Microwave Annealing for Fabrication of More Efficient Semiconductor Photoanodes for Solar Water Splitting. ACS Sustainable Chemistry & Engineering 2018, 7 (1), 944-949.
    60. Kim, J. H.; Jo, Y. H.; Kim, J. H.; Lee, J. S., Ultrafast fabrication of highly active BiVO4 photoanodes by hybrid microwave annealing for unbiased solar water splitting. Nanoscale 2016, 8 (40), 17623-17631.
    61. Yahaya, B.; Izman, S.; Konneh, M.; Redzuan, N., Microwave Hybrid Heating of Materials Using Susceptors - A Brief Review. Advanced Materials Research 2013, 845, 426-430.
    62. Jang, Y. J.; Jang, J. W.; Choi, S. H.; Kim, J. Y.; Kim, J. H.; Youn, D. H.; Kim, W. Y.; Han, S.; Sung Lee, J., Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction. Nanoscale 2015, 7 (17), 7624-31.
    63. Kaur, M.; Muthe, K. P.; Despande, S. K.; Choudhury, S.; Singh, J. B.; Verma, N.; Gupta, S. K.; Yakhmi, J. V., Growth and branching of CuO nanowires by thermal oxidation of copper. Journal of Crystal Growth 2006, 289 (2), 670-675.
    64. Ramachandran, K.; Geerthana, M.; Maadeswaran, P.; Liang, B.; Ramesh, R., Enhanced photoelectrochemical water splitting performance of hematite photoanodes by hybrid microwave annealing process. Optik 2020, 212.
    65. Zhang, H.; Noh, W. Y.; Li, F.; Kim, J. H.; Jeong, H. Y.; Lee, J. S., Three Birds, One-Stone Strategy for Hybrid Microwave Synthesis of Ta and Sn Codoped Fe2O3@FeTaO4
    Nanorods for Photo-Electrochemical Water Oxidation. Advanced Functional Materials 2019, 29 (11).
    66. Jang, Y. J.; Park, Y. B.; Kim, H. E.; Choi, Y. H.; Choi, S. H.; Lee, J. S., Oxygen-Intercalated CuFeO2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production. Chemistry of Materials 2016, 28 (17), 6054-6061.
    67. Makula, P.; Pacia, M.; Macyk, W., How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. The Journal of Physical Chemistry Letters 2018, 9 (23), 6814-6817.
    68. Zhu, C.; Panzer, M. J., Etching of electrodeposited Cu2O films using ammonia solution for photovoltaic applications. Physical Chemistry Chemical Physics 2016, 18 (9), 6722-8.
    69. Lin, C.-Y.; Lai, Y.-H.; Mersch, D.; Reisner, E., Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chemical Science 2012, 3 (12).
    70. Jian, J.; Kumar, R.; Sun, J., Cu2O/ZnO p–n Junction Decorated with NiOx as a Protective Layer and Cocatalyst for Enhanced Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2020, 3 (11), 10408-10414.
    71. Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Grätzel, M., Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability. Energy & Environmental Science 2012, 5 (9).
    72. Xu, L.; Zhang, F.; Song, X.; Yin, Z.; Bu, Y., Construction of reduced graphene oxide-supported Ag–Cu2O composites with hierarchical structures for enhanced photocatalytic activities and recyclability. Journal of Materials Chemistry A 2015, 3 (11), 5923-5933.
    73. Li, J.; Mei, Z.; Ye, D.; Liang, H.; Liu, L.; Liu, Y.; Galeckas, A.; Kuznetsov, A. Y.; Du, X., Engineering of optically defect free Cu2O enabling exciton luminescence at room temperature. Optical Materials Express 2013, 3 (12).
    74. Wang, Z.; Zhang, L.; Schulli, T. U.; Bai, Y.; Monny, S. A.; Du, A.; Wang, L., Identifying Copper Vacancies and Their Role in the CuO Based Photocathode for Water Splitting. Angewandte Chemie International Edition 2019, 58 (49), 17604-17609.
    75. Li, J.; Mei, Z.; Liu, L.; Liang, H.; Azarov, A.; Kuznetsov, A.; Liu, Y.; Ji, A.; Meng, Q.; Du, X., Probing defects in nitrogen-doped Cu2O. Scientific Reports 2014, 4, 7240.
    76. Auer, A.; Kunze‐Liebhäuser, J., Recent Progress in Understanding Ion Storage in Self‐Organized Anodic TiO2 Nanotubes. Small Methods 2018, 3 (8).
    77. Pawar, S. M.; Kim, J.; Inamdar, A. I.; Woo, H.; Jo, Y.; Pawar, B. S.; Cho, S.; Kim, H.; Im, H., Multi-functional reactively-sputtered copper oxide electrodes for supercapacitor and electro-catalyst in direct methanol fuel cell applications. Scientific Reports 2016, 6, 21310.
    78. Govindaraju, G. V.; Wheeler, G. P.; Lee, D.; Choi, K.-S., Methods for Electrochemical Synthesis and Photoelectrochemical Characterization for Photoelectrodes. Chemistry of Materials 2016, 29 (1), 355-370.
    79. Paracchino, A.; Brauer, J. C.; Moser, J.-E.; Thimsen, E.; Graetzel, M., Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy. The Journal of Physical Chemistry C 2012, 116 (13), 7341-7350.
    80. Du, F.; Chen, Q.-Y.; Wang, Y.-H., Effect of annealing process on the heterostructure CuO/Cu2O as a highly efficient photocathode for photoelectrochemical water reduction. Journal of Physics and Chemistry of Solids 2017, 104, 139-144.
    81. Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G. M.; Gonze, X., Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nature Communications 2013, 4, 2292.
    82. Park, S. M.; Razzaq, A.; Park, Y. H.; Sorcar, S.; Park, Y.; Grimes, C. A.; In, S. I., Hybrid CuxO-TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. ACS Omega 2016, 1 (5), 868-875.
    83. Panzeri, G.; Cristina, M.; Jagadeesh, M. S.; Bussetti, G.; Magagnin, L., Modification of large area Cu2O/CuO photocathode with CuS non-noble catalyst for improved photocurrent and stability. Scientific Reports 2020, 10 (1), 18730.

    下載圖示 校內:2025-07-13公開
    校外:2025-07-13公開
    QR CODE