| 研究生: |
蘇俊吉 Su, Chun-Chi |
|---|---|
| 論文名稱: |
射頻前端毫米波積體電路之研製 MMIC for RF Front-End in Millimeter-Wave System |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | Ka頻段 、藍吉耦合器 、相移器 、反射型 、寬頻 、巴倫 、次諧波混波器 、昇頻 、隔離增強 、降頻 、衰減器 、功率合成器 、功率分配器 |
| 外文關鍵詞: | Ka-band, Lange coupler, Phase shifter, subharmonic mixer, Attenuator |
| 相關次數: | 點閱:163 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究使用砷化鎵/氮化鎵製程製作射頻前端之關鍵元件,應用於毫米波通訊系統的收發機射頻前端電路元件。本論文分成五大部,第一部份,一個操作在Ka頻帶可寬頻操作180°的微波積體電路相移器,利用藍吉耦合器和場效電晶體所組合,具有精確相移和固定功率輸出效果。利用一種新的高電子遷移率砷化鎵電晶體佈局,降低電晶體的寄生效應,提高開關的隔離度。通過藍吉耦合器的寬頻操作效果,使該相移器具有寬頻操作和低插入損失變化,以及良好的反射損失條件,量測結果顯示,操作頻寬在30GHz至37GHz,插入損失在9dB至10dB之間,0°和180°具有小於1dB的插入損失變化,反射損失大於17dB以上。第二部分,一個反射式相移器,使用3dB藍吉耦合器和兩個反射負載,操作在Ka頻帶,其反射負載由一個固定電感和對接二極體變容器,所形成的LC諧振,可以用來減少相移器的插入損失,並在不同相移操作下,降低插入損失變化。操作在30GHz至40GHz,45度的相移變化量下,插入損失僅在1.75dB至3dB範圍,振幅誤差變化僅在±0.25dB,該設計除了可以減少晶片面積,並可多級串聯使用。第三部分,一個操作在24-44 GHz具有高隔離高增益的次諧波混波器,使用0.15µm的GaAs pHEMT的製程技術,實現在晶片尺寸面積為1.33×0.82 mm2。這個次諧波混波器的配置是由一個中頻(IF)前置放大器和一個射頻(RF)放大器,以及使用一對相反並聯的二極體(Anti-Parallel Diode ,APDP)所組成。IF前置放大器設置可增加本地訊號(LO)和IF之間的隔離,而射頻放大器的設置,可放大射頻信號實現次諧波混波器的高轉換增益,兩個定向的耦合微帶線都用於增加IF到RF,LO到IF,和LO號RF之間的隔離度。實測結果顯示,混波器的轉換增益從24到44 GHz在6到10.5dB,IF到RF、LO到IF、LO到RF和2LO到RF的隔離度,分別為24.5–27.1 dB、32.4–39.6 dB、20.6–24.6 dB、48.4–65 dB。第四部分,一種新的180°混合耦合線,利用兩個λ/ 4的三條耦合微帶線所構成,應用在單平衡的次諧波降頻混波器,使用0.15µm的GaAs pHEMT技術,其晶片面積小於0.82×0.83 mm2。該混波器利用180°混合耦合線,結合相反並聯的二極體(APDP)將LO與RF混波產生IF訊號,再經過低通濾波器獲得降頻混波的IF訊號,具有低轉換損失9 dB 到14 dB與寬頻操作等優異表現。最後部分,一種新的高線性寬頻衰減器,是利用一個90°混合功率分配,將功率一分為二,經過兩組0°~90°相移器,使兩訊號同功率但相位具有0°~180°變化的差值,再利用威金森功率分配器結合,透過兩個0~180°相位差訊號的結合,來控制衰減器的衰減量變化。該衰減器操作頻寬在15GHz 到40 GHz,是目前所知MMIC衰減器中,操作在毫米波頻段具有最大之線性度處理能力,並且具有能保持恆相位輸出能力。晶片製作後所量測在15GHz 到40 GHz有大於12dB的衰減範圍,在15-32GHz有大於20dB以上的衰減範圍,整個頻段的插入損失約4dB至5dB,操作頻寬與模擬計算預測相當接近,衰減器在35GHz最大之線性度處理(IP1dB)大於20dBm,利用兩組相移器,能固定在某個頻率點控制衰減下的相位維持固定,整體晶片面積為1.4 x 1.2 mm2。
SUMMARY
The growing demand for wide operational bandwidth,high-speed data transfer, low manufacturing cost, and low power consumption has become more prevalent in millimeterwave communication systems.This dissertation investigates the critical RF components fabricated by a standard GaAs/GaN process for millimeter-wave RF front-end Applications. This dissertation MMIC design includes a 30GHz to 37GHz 0°/180° switch Phase shifters, a 30GHz to 40GHz 45°/90° consecutive Phase Shifter, a 24 GHz to 44 GHz upconversion broadband subharmonic mixer ,a 37 to 85 GHz down-converter broadband subharmonic mixer ,and a 15 GHz to 40 GHz voltage-variable attenuator.
[1] T. Rappaport et al., “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!,” IEEE Access, vol.1, May 2013, pp. 335–49.
[2] H. Zhao et al., “28 GHz Millimeter Wave Cellular Communication Measurements for Reflection and Penetration Loss in and Around Buildings in New York City,”IEEE ICC ’13, June 2013, pp. 516–67.
[3] T. Kim et al., “Tens of Gbps Support with mmWave Beamforming Systems for Next Generation Communications,”IEEE GLOBECOM ’13, Dec. 2013, pp. 3790–95.
[4] F. Khan and Z. Pi, “mmWave Mobile Broadband (MMB):Unleashing the 3–300GHz Spectrum,” IEEE Sarnoff Symp. 34th, 2011.
[5] J. Murdock et al., “A 38 GHz Cellular Outage Study for an Urban Outdoor Campus Environment,” Wireless Commun. Network. Conf., Apr. 2012, pp. 3085–90.
[6] B. Razavi, “A 2.4 GHz CMOS receiver for IEEE 802.11 wireless LAN’s,” IEEE J. Solid-State Circuits, vol. 34, pp. 1382−1385, Oct. 1999.
[7] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[8] T. Yamaji, H. Tanimoto, and H. Kokatsu, “An I/Q active balanced harmonic mixer with IM2 cancelers and a 45 degree phase shifter,” in IEEE Solid-State Circuits Conf. Dig. Tech. Papers, pp. 368−369, 1998.
[9] Z. Zhang, and J. Lau, “A flicker-noise-free DC-offset-free harmonic mixer in a CMOS process,” in IEEE radio and Wireless Conf. Dig. Tech. Papers, pp. 113−116, 2001.
[10] L. Sheng, J. C. Jensen, and L. E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE J. Solid-State Circuits, vol. 35, pp. 1329−1337, Sept. 2000.
[11] M. Tsuji, T. Nishikawa, K.Wakino, and T. Kitazawa, “Bi-directionally fed phased-array antenna downsized with variable impedance phase shifter for ISM band,” IEEE Trans. Microw. Theory Tech., vol. 54, no.7, pp. 2962–2969, Jul. 2006.
[12] R.V. Garver, “360 varactor linear phase modulator,” IEEE Trans. Microw.Theory Tech., vol. MTT-17, no. 3, pp. 137–147, Mar. 1969.
[13] B.T. Henoch and P. Tamm, “A 360 reflection-type diode phase modulator,”IEEE Trans. Microw. Theory Tech., vol. MTT-19, no. 1, pp.103–105, Jan. 1971.
[14] L. R. Whicker, “Forward-special issue on microwave control devices for array antenna systems,” IEEE Trans. Microw. Theory Tech., vol.MTT-22, no. 6, pp. 589–590, Jun. 1974.
[15] K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara,T. Takagi, and S. Urasaki, “An ultra-broad-band reflection-type phase shifter MMIC with series and parallel LC circuits,” IEEE Trans. Microw.Theory Tech., vol. 49, no. 12, pp. 2446–2452, Dec. 2001.
[16] K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 8, pp.1313–1317, Aug. 2000.
[17] Kang, D.-W., Lee, H.D., Kim, C.-H., and Hong, S.: ‘Ku-band MMIC phase shifter using a parallel resonator with 0.18-mm CMOS technology’, IEEE Trans. Microw. Theory Tech., 2006, 54, (1),pp. 294–301
[18] M. Kim, J. Yang, and K. Yang, “Switched transmission-line type Q-band 4 b MMIC phase shifter using InGaAs PIN diodes,” Electron. Lett., vol. 46, no. 3, pp. 225–226, Feb. 2010.
[19] V. E. Dunn, N. E. Hodges, O. Sy, and W. Alyassini, “MMIC components for mm-wavelength active arrays,” Microwave J., pp. 109–116,Dec. 1989
[20] M. Aust, H. Wang, R. Carandang, K. Tan, C. H. Chen, T. Trinh, R. Esfandiari, and H. C. Yen, “GaAs monolithic components development for Q-band phased array application,” in IEEE MTT-S Int. Microwave Symp. Dig, Albuquerque, NM, June 1992, pp. 703–706
[21] K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara,T. Takagi, and S. Urasaki, “An ultra-broad-band reflection-type phase shifter MMIC with series and parallel LC circuits,” IEEE Trans. Microw.Theory Tech., vol. 49, no. 12, pp. 2446–2452, Dec. 2001.
[22] D. Kang, J. Kim, B. Min, and G. M. Rebeiz, “Single and four-element Ka band transmit/receive phased-array silicon RFICs with amplitude and phase control,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3534–3543, Dec. 2009.
[23] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18μm CMOS technology”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp.95–97, Feb. 2009.
[24] J. H. Tsai, H. Y. Yang, T. W. Huang, and H. Wang, “A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless. Compon. Lett., vol. 18, no. 8, pp. 554–556, Aug. 2008.
[25] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 679–681, Sep. 2007.
[26] J. H. Tsai and T. W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Techniques, vol. 55, no. 10, pp. 2075–2085, Oct. 2007.
[27] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9–31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
[28] C. L. Kuo., C. C. Kuo, C. H. Lien, J. H. Tsai, and H. Wang, “A novel reduced-size rat-race broadside coupler and its application for CMOS distributed sub-harmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no.3, pp. 194-196, Mar. 2008.
[29] T. Y. Yang and H. K. Chiou, “A 28 GHz sub-harmonic mixer using LO doubler in 0.18-μm CMOS technology,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp., San Francisco, CA, June 2006, pp. 209–212.
[30] S. K. Lin, J. L. Kuo, and H. Wang, “A 60 GHz sub-harmonic resistive FET mixer using 0.13μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 562-564, Oct. 2011.
[31] P. C. Yeh, W. C. Liu, and H. K. Chiou, “Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element high-pass/band-pass balun,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 62–64, Feb. 2005.
[32] H. K. Chiou and J. Y. Lin, “Symmetric offset stack balun in standard 0.13-μm CMOS technology for three broadband and low-loss balanced passive mixer designs,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1529–1538, June 2011.
[33] S. E. Gunnarsson, “Analysis and design of a novel ×4 subharmonically pumped resistive HEMT mixer,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 809–816, Apr. 2008.
[34] Y. J. Hwang, H. Wang, and T. H. Chu, “A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 313–315, Jul. 2004.
[35] T. K. Johansen, J. Vidkjer, V. Krozer, A. Konczykowska, M. Riet, F. Jorge, and T. Durhuus, “A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler,” IEEE Trans. Microwave Theory Techniques, vol. 56, no. 3, pp.613–619, Mar. 2008.
[36] B. H. Lee, S. C. Kim, M. K. Lee, W. S. Sul, B. O. Lim, W. Y. Uhm, and J. K. Rhee, “Q-band high conversion gain active sub-harmonic mixer,” Current Applied Physics, no. 4, pp. 69-73, 2004.
[37] H. J. Wei, C. Meng, T. W. Wang, T. L. Lo, and C. L. Wang, “60-GHz dual-conversion down-/up-converters using Schottky diode in 0.18 um foundry CMOS technology ,” IEEE Trans. Microwave Theory Techniques, vol. 60, no. 6, pp. 1684–1698, June 2012.
[38] S. K. Lin, J. L. Kuo, and H. Wang, “A 60 GHz sub-harmonic resistive FET mixer using 0.13 um CMOS technology”, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp.562–564, Oct. 2012.
[39] W. C. Chien, C. M. Lin, C. H. Liu, S. H. Hung and Y. H. Wang “Wide-band high isolation subharmonically pumped resistive mixer with active quasi-circulator," Progress In Electromagnetics Research Letters, Vol. 18, pp.135–143, 2010.
[40] J. Y. Su, C. Meng, and P. Y. Wu, “Q-Band pHEMT and mHEMT subharmonic Gilbert upconversion mixers,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 392–394, June 2009.
[41] J. J. Kuo, C. H. Lien, Z. M. Tsai, K. Y. Lin, K. Schmalz, J. C. Scheytt, and H. Wang, “Design and Analysis of down-conversion gate/base-pumped harmonic mixers using novel reduced-size 180 hybrid with different input frequencies,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2473–2485, Aug. 2012.
[42] S. H. Hung, K. W. Cheng, and Y. H. Wang. “Broadband sub-harmonic mixer with a compact band pass filter,” in IEEE Asia-Pacific Microwave Conference (APMC), Dec. 2012, pp.208-210.
[43] R. Svitek, and S. Raman, “5–6 GHz SiGe active I/Q subharmonic mixers with power supply noise effect characterization,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 319–321, July 2004.
[44] S. He and C. E. Saavedra, “An ultra-low-voltage and low-power x2 subharmonic downconverter mixer,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 2, pp. 311–317, Feb. 2012.
[45] C.-H. Lien, C.-H. Wang, C.-S. Lin, P.-S. Wu, K.-Y. Lin, and H. Wang, “Analysis and design of reduced-size Marchand rat-race hybrid for millimeter-wave compact balanced mixers in 130-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1966–1977, Aug. 2009.
[46] C. Y. Pon, “Hybrid-ring directional coupler for arbitrary power divisions,” IRE Trans. Microwave Theory Tech., vol. MTT-9, pp. 529–535, Nov. 1961.
[47] S. March, “A wideband stripline hybrid ring,” IEEE Trans. Microw. Theory Tech., vol. MTT-16, p. 361, June 1968.
[48] K. S. Ang and Y. C. Leong, “Converting baluns into broad-band impedance-transforming 180 hybrids,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1990–1995, Aug. 2002.
[49] M. Cohn, J. E. Degenford, and B. A. Newman, “Harmonic mixing with an anti-parallel diode pair,” IEEE Trans. Microw. Theory Tech., vol. MTT-23, no. 8, pp. 667–673, Aug. 1875.
[50] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 679–681, Sep. 2007.
[51] Y. Tajima, T. Tsukii, R. Mozzi, E. Tong, L. Hanes, and B. Wrona, “GaAs monolithic wideband (2–18 GHz) variable attenuators,” in IEEE MTT-S Dig., 1982, vol. 1, pp. 479–481.
[52] Y. Imai, E. Sano, and K. Asai, “Design and performance of wideband GaAs MMIC’s for high-speed optical communication systems,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 2, pp. 185–190, Feb. 1992.
[53] S. Bellofiore, C. A. Balanis, J. Foufz, and A. S. Spanias, “Smart-antenna systems for mobile communication networks. Part 2: Beamforming and network throughput,” IEEE Antennas Propag. Mag., vol.44, no. 4, pp. 106–114, Aug. 2002.
[54] M. Chongcheawchamnan, S. Bunnjaweht, D. Kpogla, D. Lee, and I. D. Robertson, “Microwave I-Q vector modulator using a simple technique for compensation of FET parasitics,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 6, pp. 1642–1646, Jun. 2002.
[55] B.-H. Ku, and S. Hong, “6-bit CMOS Digital Attenuators with Low Phase Variations for X-Band Phased-Array Systems,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 7, pp. 1651–1663, July 2010.
[56] L. Boglione and R. Pavio, “Temperature and process insensitive circuit design of a voltage variable attenuator IC for cellular band applications,” IEEE Microw. Guided Wave Lett., vol. 10, no. 7, pp. 279–281, Jul. 2000.
[57] S. M. Daoud and P. N. Shastry, “A novel wideband MMIC voltage controlled attenuator with a bandpass filter topology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2576–2583, June 2006.
[58] L. Sjogren, D. Ingram, M. Biedenbender, R. Lai, B. Allen, and K. Hubbard, “A low phase-error 44-GHz HEMT attenuator,” IEEE Microw. Guided Wave Lett., vol. 8, no. 5, pp. 194–195, May 1998.
[59] Y. S. Dai, D. G. Fang, and Y. X Guo, “A novel UWB (0.045–50 GHz) digital/analog compatible MMIC variable attenuator with low insertion phase shift and large dynamic range,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 61–63, Jan. 2007.
[60] B. W. Min and G. M. Rebeiz, “A 10-50-GHz CMOS distributed step attenuator with low loss and low phase imbalance,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2547–2554, Nov. 2007.
[61] W. Kang, I. Chang, and M. Kang, “Reflection-type low-phase-shift attenuator,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 7, pp.1019–1021, Jul. 1998.
[62] S. Bulja, and A. Grebennikov, “Variable reflection type attenuator based on varactor diode,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp.3719–3727, Dec. 2012.
[63] S. Nam, A. E. Ashtiani, C. F. Oztek-Yerli, and I. D. Robertson, “Wideband reflection type MMIC attenuator with constant phase,” Electron. Lett., vol. 34, pp. 91–93, Jan. 1998.
[64] C. E. Saavedra, and Y. Zheng, “Ring-hybrid microwave voltage-variable attenuator using HFET transistors,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2430-2434, July 2005.
[65] J. C. Wu, T. Y. Chin, S. F. Chang, and C. C. Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2180–2189, Oct. 2008.
[66] K. J. Koh and G. M. Rebeiz, “0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 2535–2546, Nov. 2007.
[67] T. Ohira, Y. Suzuki, H. Ogawa, and H. Kamitsuna, “Megalithic microwave signal processing for phased-array beam forming and steering,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp.2324–2332, Dec. 1997.
[68] M. Yu, R. J. Ward, D. H. Hovda, G. M. Hegazi, A. W. Hanson, and K. Linthicum, “The development of a high power SP4T RF switch in GaN HFET technology,” IEEE Microw. Wireless Compon. Lett. vol. 17, no. 12, pp.898–896, Dec. 2007.
[69] A. Wentzel, F. Schnieder, C. Meliani, and W. Heinrich, “A simplified switch-based GaN HEMT model for RF switch-mode amplifiers,” Proceedings of the 4th European Microwave Integrated Circuits Conference, pp.77–80, 28–29 Sep. 2009, Rome, Italy,
[70] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999.
[71] E. J. Wilkinson, “An N-way hybrid power divider”, IRE Trans. Microw. Theory Tech., vol. 8, pp. 116–118, Jan. 1960.
[72] H. Howe, Stripline Circuit Design. Dedham, MA: Artech House, 1974, pp. 97–159.
[73] K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara, T. Takagi, and S. Urasaki, “An ultra-broad-band reflection-type phase shifter MMIC with series and parallel LC circuits,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2446–2452, Dec. 2001.
[74] F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective type phase shifter MMIC for C-band using a lumped element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
[75] B. Biglarbegian, M. R. Nezhad-Ahmadi, M. Fakharzadeh, and S. Safavi-Naeini, “Millimeter-wave reflective-type phase shifter in CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 560–562, Sep. 2009.
[76] C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp.1862–1868, Sep. 2007.