| 研究生: |
蔡智倫 Tsai, Chih-Lun |
|---|---|
| 論文名稱: |
可抗集合雜訊之抗消相干量子態 Decoherence-free states over Collective-noise Channels |
| 指導教授: |
黃宗立
HUANG, TSUNG-LI |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 集合雜訊 、量子密碼學 、量子金鑰分配 、量子直接通訊 |
| 外文關鍵詞: | collective noise, quantum cryptography, quantum key distribution, quantum direct communication, quantum dialogue |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今量子電腦和量子演算法快速發展的時代中,許多基於因數分解與離散對數之密碼系統都已被證明可以使用量子演算法在多項式時間內破解。因此,基於量子物理之特性的量子密碼就此因應而生。量子密碼學基於量子物理之特性設計通訊協定除了可以達到無條件安全外,更具備兩項優點 : (1) 通訊協定的安全性是基於量子物理之特性,所以不受量子電腦的威脅; (2) 在通訊的過程中,可以偵測出是否有竊聽者的存在。然而現今大多數的量子通訊協定,必須假設量子在傳輸過程當中無雜訊干擾的影響,換言之就是假設量子通道為理想通道,通道內沒有任何雜訊會影響正在傳輸的量子訊息。若是不假設量子通道為理想通道,則這些量子協定在執行竊聽者檢查時,會因為雜訊的干擾而無法得知訊息的錯誤率是由雜訊的干擾所造成或是竊聽者攻擊所造成。再者,竊聽者也可以利用量子通道雜訊所造的錯誤對通訊協定進行攻擊,使協定產生錯誤。讓通訊者在檢查是否有竊聽者存在時,以為錯誤是因為通道內有雜訊所產生之錯誤,而非竊聽者存在之原因。因此如何在有集合雜訊干擾下的量子通道,設計出安全的量子通訊協定將是未來量子密碼學研究的熱門的議題。
本論文專注於研究量子物理與可抗集合雜訊之六顆DFS量子態。首先,結合量子物理之特性來設計可抗雜訊干擾的編碼方式並設計安全的量子通訊協定。最後,利用編碼方式來確保在有雜訊干擾下進行的量子通訊協定都可保持協定的安全性。其中,這些量子協定包含量子私密比較、半量金鑰分配協定、量子直接通訊協定與確定式量子通訊協定
Owing to the rapid development of quantum computing and quantum algorithms, it is believed that many difficult mathematical problems could be easily solved in the near future using quantum computers. Thus, various well known cryptosystems whose security is based on such mathematical problems could be easily compromised. This motivates the conduct of research on quantum computation, and the establishment of quantum cryptography businesses to resolve these security issues. Many quantum security protocols using quantum phenomena (e.g., the no-cloning theorem and the measurement uncertainty principle) have been proposed. In comparison with classical communication protocols, quantum security protocols have the following advantages: (1) their security is built with consideration given to quantum phenomena; therefore, the protocols are secure against attacks using quantum computers; (2) the presence of eavesdroppers can be detected. Moreover, existing quantum security protocols assume that quantum channels are ideal; that is, a quantum channel is considered to be free of any type of noise. However, noise exists in real channels, and an eavesdropper may disguise their attack as noise to avoid being detected during the eavesdropping checking process. Hence, in real applications, quantum security protocols have to be designed for combating noise, which is an important research topic.
Accordingly, the objective of this study was to employ quantum mechanical properties and decoherece-free states and develop fault tolerant quantum secure communication protocols in quantum environments. This thesis investigates the properties of decoherece-free states and its coding functions. First, two decoherece-free states, four-particle decoherece-free states and six-particle decoherece-free states are considered. Three coding functions were developed using six-particle decoherece-free states. Finally, this thesis proposes a fault tolerant semi-quantum key distribution protocol, fault tolerant quantum direct communication protocol, and fault tolerant deterministic quantum communication protocol, respectively.
[1] Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys.Rev.A 79(3), pp. 032341, 2009
[2] Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), pp. 052312, 2009
[3] Wang, J., Zhang, S., Zhang, Q., Tang, C. J.: Semiquantum key distribution using entangled states. Chinese Phys. Lett. 28(10), pp. 100301, 2011
[4] Z.-W. SUN, R.-G. DU, and D.-Y. LONG, "QUANTUM KEY DISTRIBUTION WITH LIMITED CLASSICAL BOB," International Journal of Quantum Information, vol. 11, no. 01, pp. 1350005, 2013.
[5] Kun-Fei Yu, Chun-Wei Yang, Ci-Hong Liao and Tzonelih Hwang, "Authenticated Semi-quantum Key Distribution Protocol Using Bell States," Quantum Information Processing, Vol. 13, Issue 6, pp. 1457-1465, 2014.
[6] Q. Li, W. H. Chan, and S. Zhang, "Semiquantum key distribution with secure delegated quantum computation," Scientific Reports, vol. 6, 2016.
[7] Chuan-Ming Li, Kun-Fei Yu, Shih-Hung Kao, Tzonelih Hwang.: Authenticated semi-quantum key distributions without classical channe. Quantum Inf Process pp. 15:2881–2893, 2016
[8] A. Meslouhi, and Y. Hassouni, "Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states," Quantum Information Processing, vol. 16, no. 1, pp. 18, 2016.
[9] K. Boström and T. Felbinger, "Deterministic Secure Direct Communication Using Entanglement," Physical Review Letters, vol. 89, pp. 187902, 2002.
[10] F.-G. Deng, G. Long, and X.-S. Liu, "Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block," Physical Review A, vol. 68, pp. 042317, 2003.
[11] Q.-Y. Cai, "The “Ping-Pong” Protocol Can Be Attacked without Eavesdropping," Physical Review Letters, vol. 91, pp. 109801(1), 2003.
[12] F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, "Eavesdropping on the `ping-pong' quantum communication protocol freely in a noise channel," Chinese Physics, vol. 16, pp. 277, 2007.
[13] G. Long and X. Liu, "Theoretically efficient high-capacity quantum-key-distribution scheme," Physical Review A, vol. 65, pp. 032302, 2002.
[14] F.-G. Deng and G. Long, "Secure direct communication with a quantum one-time pad," Physical Review A, vol. 69, p. 052319, 2004.
[15] G.-L. Long, F.-G. Deng, C. Wang, X.-H. Li, K. Wen, and W.-Y. Wang, "Quantum secure direct communication and deterministic secure quantum communication," Frontiers of Physics in China, vol. 2, pp. 251-272, 2007.
[16] A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, "Secure direct communication based on secret transmitting order of particles," Physical Review A, vol. 73, Feb 2006.
[17] C. Wang, F. G. Deng, and G. L. Long, "Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state (vol 253, pg 15, 2005)," Optics Communications, vol. 262, pp. 134-134, 2006.
[18] X.-H. Li, C.-Y. Li, F.-G. Deng, P. Zhou, Y.-J. Liang, and H.-Y. Zhou, "Quantum secure direct communication with quantum encryption based on pure entangled states," Chinese Physics, vol. 16, pp. 2149, 2007.
[19] C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Physical Review A, vol. 71, pp. 044305, 2005.
[20] Y. Yang and Q. Wen, "Threshold quantum secure direct communication without entanglement," Science in China Series G-Physics Mechanics & Astronomy, vol. 51, pp. 176-183, 2008.
[21] G. D. Kang and M. F. Fang, "A Scheme to Share Information via Employing Discrete Algorithm to Quantum States," Communications in Theoretical Physics, vol. 55, pp. 239-243, 2011.
[22] K. Shimizu and N. Imoto, "Communication channels secured from eavesdropping via transmission of photonic Bell states," Physical Review A, vol. 60, pp. 157-166, 1999.
[23] A. Beige, B. G. Englert, C. Kurtsiefer, and H. Weinfurter, "Secure communication with a publicly known key," Acta Physica Polonica A, vol. 101, pp. 357-368, 2002.
[24] A. Beige, B. G. Englert, C. Kurtsiefer, and H. Weinfurter, "Secure communication with a publicly known key (vol 101, pg 357, 2002)," Acta Physica Polonica A, vol. 101, pp. 901-901, 2002.
[25] F. L. Yan and X. Q. Zhang, "A scheme for secure direct communication using EPR pairs and teleportation," The European Physical Journal B - Condensed Matter and Complex Systems, vol. 41, pp. 75-78, 2004.
[26] T. Gao, F. L. Yan, and Z. X. Wang, "Quantum secure conditional direct communication via EPR pairs," International Journal of Modern Physics C, vol. 16, pp. 1293-1301, 2005.
[27] Z. X. Man, Z. J. Zhang, and Y. Li, "Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations," Chinese Physics Letters, vol. 22, pp. 18-21, 2005.
[28] X.-H. Li, F.-G. Deng, C.-Y. Li, Y.-J. Liang, P. Zhou, and H.-Y. Zhou, "Deterministic secure quantum communication without maximally entangled states," Journal of the Korean Physical Society, vol. 49, pp. 1354-1359, 2006.
[29] H.-J. Cao and H.-S. Song, "Quantum Secure Direct Communication with W State," Chinese Physics Letters, vol. 23, p. 290, 2006.
[30] L. Dong, X.-M. Xiu, Y.-J. Gao, and F. Chi, "Quantum Secure Communication Using a Class of Three-Particle W State," Communications in Theoretical Physics, vol. 50, p. 359, 2008.
[31] L. Dong, X.-M. Xiu, Y.-J. Gao, and F. Chi, "Quantum Secure Direct Communication Using W State," Communications in Theoretical Physics, vol. 49, p. 1495, 2008.
[32] X.-M. Xiu, H.-K. Dong, L. Dong, Y.-J. Gao, and F. Chi, "Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping," Optics Communications, vol. 282, pp. 2457-2459, 2009.
[33] M. Lucamarini and S. Mancini, "Secure Deterministic Communication without Entanglement," Physical Review Letters, vol. 94, pp. 140501, 2005.
[34] J. Wang, Q. Zhang, and C.-J. Tang, "Quantum secure direct communication based on order rearrangement of single photons," Physics Letters A, vol. 358, pp. 256-258, 2006.
[35] C.-Y. Li, X.-H. Li, F.-G. Deng, and H.-Y. Zhou, "Efficient quantum secure communication with a publicly known key," Chinese Physics B, vol. 17, pp. 2352-2355, 2008.
[36] X. H. Li, F. G. Deng, and H. Y. Zhou, "Efficient quantum key distribution over a collective noise channel," Physical Review A, vol. 78, pp. 022321, 2008.
[37] P. Zanardi and M. Rasetti, "Noiseless Quantum Codes," Physical Review Letters, vol. 79, pp. 3306, 1997.
[38] E. Knill, R. Laflamme, and L. Viola, "Theory of Quantum Error Correction for General Noise," Physical Review Letters, vol. 84, pp. 2525, 2000.
[39] D. A. Lidar, D. Bacon, J. Kempe, and K. Birgitta Whaley, "Protecting quantum information encoded in decoherence-free states against exchange errors," Physical Review A, vol. 61, pp. 052307, 2000.
[40] J. Kempe, D. Bacon, D. Lidar, and K. Whaley, "Theory of decoherence-free fault-tolerant universal quantum computation," Physical Review A, vol. 63, pp. 042307, 2001.
[41] A. M. Basharov, V. N. Gorbachev, A. I. Trubilko, and E. S. Yakovleva, "One-way gates based on EPR, GHZ and decoherence-free states of W class," Physics Letters A, vol. 373, pp. 3410-3412, 2009.
[42] P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, "Experimental verification of decoherence-free subspaces," Science, vol. 290, pp. 498-501, 2000.
[43] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India ,1984
[44] Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282(16), pp.3382–3385 (2009)
[45] Jing, Y., Chuan, W., Ru, Z.: Faithful quantum secure direct communication protocol
against collective noise. Chin. Phys. B 19(11), pp. 110306 ,2010
[46] Yan, C., Zhang, S.B., Yan, L.L., Han, G.H.: Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state. Chin. Phys. B 24(5), pp. 050307, 2015
[47] A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?," Physical Review, vol. 47, pp. 0777-0780, May 1935.
[48] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," Journal of Cryptology, vol. 5, pp. 3-28, 1992.
[49] R. Hughes, G. Luther, G. Morgan, C. Peterson, and C. Simmons, "Quantum Cryptography over Underground Optical Fibers," presented at the Advances in Cryptology - CRYPTO '96, 16th Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, Santa Barbara, California, USA, 1996.
[50] Kampe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free faulttolerant universal quantum computation. Phys. Rev. A 63, pp. 042307, 2001
[51] Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys.
Rev. A 75, pp. 020301 ,2007
[52] Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.:
16 Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, pp. 107901, 2004
[53] Lu-Ming, D. et al.: Optimal quantum codes for preventing collective amplitude damping Phys. Rev. A vol. 58, pp. 3491-3495, 1998
[54] Boström, K., Felbinger, T.: Deterministic secure direct communication using
entanglement. Phys. Rev. Lett. 89, pp. 187902, 2002
[55] M. Bourennane, M. Eibl, S. Gaertner, and C. Kurtsiefer, Decoherence-free quantum information processing with four-photon entangled states, Phys. Rev. Lett. 92, 107901, 2004.
[56] Li, X.-H., Deng, F.-G. and Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel Physical Review A, vol.78, pp. 022321, 2008
[57] Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: Quantum exam. Phys. Lett. A 360(6),
748–750, 2007
[58] Wang, J., Zhang, Q., Tang, C.: Quantum secure direct communication without using perfect quantum channel. Int. J. Mod. Phys. C 17(5), pp. 685 ,2006
[59] Boström, K., Felbinger, T.: Deterministic secure direct communication using
entanglement. Phys. Rev. Lett. 89, pp. 187902 ,2002
[60] Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over
arbitrarily long distances. Science 283(5410), pp. 2050–2056 ,1999
[61] Yang, C.W., Hwang, T.: Improved QSDC protocol over a collective-dephasing
noise channel. Int. J. Theor. Phys. 51(12), pp. 3941–3950, 2012
[62] Qing-YuCai: Eavesdropping on the two-way quantum communication protocols with
invisible photons. Phys. Rev. A Volume 351, Issues 1–2, 20 pp. 23-25 February 2006,
[63] Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, pp. 054302 ,2006
[64] C. H. Bennett, G. Brassard, and J. M. Robert.:Generalized Privacy Amplification. IEEE Transactions on Information Theory, vol. 41, pp. 1915-1953, Nov1995
[65] C. H. Bennett, G. Brassard, and J. M. Robert.:Privacy Amplification by Public Discussion. SIAM Journal on Computing, vol. 17, pp. 210-229, Apr 1988.
[66] Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), pp. 4729–4732 ,2000
[67] Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett. 89(18), pp.187901 ,2002
[68] Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43 , 2002
[68] Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 4, 41 ,2002
[70] Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), pp. 3762–3764 ,2004
校內:2024-01-30公開