| 研究生: |
劉庭瑋 Liu, Ting-Wei |
|---|---|
| 論文名稱: |
以多元醇法製備單晶黃銅礦相Cu(In,Al)S2奈米材料及其特性分析 Synthesis of Chalcopyrite Cu(In,Al)S2 Nanocrystals by Polyol Route and their Characterization |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 黃銅礦 、銅銦鋁硫 、太陽能電池 、多元醇 、奈米粒子 |
| 外文關鍵詞: | chalcopyrite, CIAS, solar cell, polyol, nanoparticle |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中,我們利用多元醇法(polyol route)製備出具有單一黃銅礦晶相結構的CuIn1-xAlxS2奈米粒子,x介於0~0.5之間。CuIn1-xAlxS2奈米粉體使用氯化銅(CuCl)、氯化銦(InCl3)、氯化鋁(AlCl3)及硫元素(S)藥品所製備,並去討論不同反應溫度、反應時間及PVP對CIAS莫耳比對實驗的影響。
在實驗過程中,我們不斷改變各式參數來討論CIAS奈米粒子的成長情況,並發現在這個實驗系統下,在PVP對CIAS的莫耳(mole)比在1:1,反應溫度310oC、反應時間6小時等條件下,合成出的奈米粒子其晶粒大小約介於20~50nm之間,輔以XRD及Raman分析鑑定的CIAS具有單一黃銅礦相結構、TEM影像了解更細微的顯微結構、使用EDS及ESCA光譜來檢驗CIAS的成分及UV-Visible吸收光譜發現製程較好的參數條件下所製備出的Cu(In0.9Al0.1)S2薄膜其光能隙值(Band Gap)約為1.59eV。
In this study, we report the synthesis in solution of phase pure nanocrystals of chalcopyrite CuIn1-xAlxS2 with x ranged from 0.1~0.5. CuIn1-xAlxS2 nanocrystals were synthesized from copper chlorides, indium chlorides, Aluminum chloride and sulfur. The effects of reaction temperature, reaction time, ratio of CIAS and PVP(polyvinyl pyrrolidone) were investigated.
The experimental results demonstrate that CIAS nanocrystals ranging from 20~50 nm in diameter were synthesized in solution with the conditions of the PVP:CIAS ratio of 1:1, reaction temperature of 310oC, reaction time of 6h. The nanocrystals of chalcopyrite CIAS was identified by X-ray diffractometry and Raman Spectrometer, TEM was used to observe the microstructure of CIAS nanoparticles, EDS and ESCA were used to analyze the CIAS composition. The optical band gap of the existence of the CuIn0.9Al0.1S2 film detected by UV- vis spectroscope is about 1.59 eV.
[1] Udai P. Singha, William N. Shafarmanb, Robert W. Birkmireb, “Surface sulfurization studies of Cu(InGa)Se2 thin film,” Solar Energy Materials & Solar Cells., 90, p.623-630. (2006)
[2] 邱秋燕, 廖曰淳, 郭豐綱, “低成本銅銦鎵硒(CIGS)太陽電池技術發展” 工業材料, 276, p.58-68. (2009)
[3] A.S. Kindyak, V.V. Kindyak, V.F. Gremenok, “Energy-gap variations in thin laser-deposited Cu(In,Ga)Se2 films,” Materials Letters., 28, p.273-275. (1996)
[4] Arturo Morales-Acevedo, “Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells,” Solar Energy Materials & Solar cells., 93, P.41-44. (2009)
[5] M. A. Contreras, M. J. Romero, R. Noufi, “Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells,” Thin Solid Films, 511-512, p.51-54. (2006)
[6] I. Repins, M.A. Contreras, B Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. Yo, R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Progress in Photovoltaics., 16, P235.(2008)
[7] 何孟穎, “CIGS薄膜太陽電池技術優勢與研發進展” 光連雙月刊, 80, p.8-14. (2009)
[8] 徐如人, 龐文琴, “無機合成與製備化學” 五南圖書出版股份有限公司, p.733-742. (2004)
[9] 林琬蓉, “FePt合金粒子之製備與性質研究” 國立成功大學材料科學研究所碩士論文, p.5-8. (2007)
[10] C. B. Murray, D. J. Noms, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc., 115, p.8706-8715. (1993)
[11] 利宗倫, “以溶熱法合成Ⅰ-Ⅲ-Ⅵ 族CuInS2奈米 粒子及其特性探討” 國立成功大學化學工程研究所碩士論文, p.12-13. (2008)
[12] L. S. Li, N. Pradhan, Y. Wang, and X. Peng, “High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors,” Nano Letters., 4, p.2261-2264. (2004)
[13] M. A. Hines, G. S. Philippe, “Bright UV-blue luminescent colloidal ZnSe nanocrystals,” J. Phys. Chem. B, 102, p. 3655–3657. (1998)
[14] L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Letters, 1, p.333-337. (2001)
[15] W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater, 15, p.2854-2860. (2003)
[16] W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed, 41, p.2368-2371. (2002)
[17] Z. A. Peng and X. Peng, “Nearly monodisperse and shape - controlled CdSe nanocrystals via alternative routes: nucleation and growth,” J. Am. Chem. Soc, 124, p.3343-3353. (2002).
[18] W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chem. Mater, 15, p. 4300-4308. (2003)
[19] N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, “Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes,” J. Phys. Chem. B, 106, p. 7177-7185. (2002)
[20] M. Shim, G. S. Philippe, “Organic-capped ZnO nanocrystals: synthesis and n-type character,” J. Am. Chem. Soc., 123, p.11651-11654. (2001)
[21] F. Smaïli, M. Kanzari, B. Rezig, “Characterization of CuIn1 − xAlxS2 thin films prepared by thermal evaporation,” Materials Science and Engineering, 28, p.954-958.(2008)
[22] F. Smaïli, “Growth of single-phase Cu(In, Al)S2 thin films by thermal evaporation,” The European Physical Journal Applied Physics, 54, p.10304-10308.(2011)
[23] F. Smaili, “Effect of Annealing on the Structural and Optical Properties of CuIn1–xAlxS2 Thin Films,” Materials Sciences and Applications, 2, p.1212-1218.(2011)
[24] B. Zhu, C. Zhua, S. Chang, Y. W. Zhang, C. Z. Wang, ” Fabrication and Characterization of CIASSe Thin Film Photovoltaic Absorbers Using CIAS Nanocrystals,” Advanced Materials Research, 512-515, p. 39-42.(2012)
[25] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. AM. Chem. SOC, 130, p.16770-16777. (2008)
[26] H. Grisaru, O. Palchik, A. Gedanken, “Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles,” Inorg. Chem., 42, p.7148-7155. (2003)
[27] J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, “Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles,” Chem. Mater., 20, p.6906-6910. (2008)
[28] S. Ahn, K. Kim, Y. Chun, K. Yoon, “Nucleation and growth of Cu(In,Ga)Se2 nanoparticles in low temperature colloidal process,” Thin Solid Films., 515, p.4036-4040. (2007)
[29] J. D. Wu, L. T. Wang, C. Gau, “Synthesis of CuInGaSe2 nanoparticles by modified polyol route,” Solar EnergyMaterials&SolarCells, 98, p.404-408.(2012)
[30] F. Fievet, J. P. Lagier, B. Blin, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics, 32-33, p. 198-205.(1989)
[31] P. Y. Silvert, R. Urbina, K. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process,” J. Mater. Chem., 7, p.293-299.(1997)
[32] 王鉦源, “以化學還原法製備奈米級銀鈀微粉” 國立成功大學化學工程研究所碩士論文.(2008)
[33] G. Schmid, V. Maihack, F. Lantermann, S. Peschel, “Ligand-stabilized metal clusters and colloids: properties and applications,” J. Chem. Soc., 5, p.589-595.(1996)
[34] 任鏘諭, “奈米金屬微粒之製備及其特性研究” 國立清華大學化學工程研究所碩士論文.(1998)
[35] Yunbin He, “CuInS2 Thin Films for Photovoltaic:RF Reactive Sputter Deposition and Characterization,” Justus-Liebig-Universität Gießen Dissertation, p.1-119. (2003)
[36] S.-H.Wei and A. Zunger, “Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends,” Phys. Rev. B., 60, p.5404-5411. (1999)
[37] S.H. Wei, L.G. Ferreira, and A. Zunger, “First-principles calculation of the order-disorder transition in chalcopyrite semiconductors,” Phys.Rev.B., 45, p.2533-2536. (1992)
[38] Wei S.H., Zhang S.B., and Zunger A., “Band structure and stability of zinc-blende-based semiconductor polytypes,” Phys.Rev.B, 59, p.2478-2481. (1999)
[39] Alvarez-Garcia J, Pérez-Rodríguez A, Barcones B., Romano-Rodríguez A and Morante J.R., Scheer R., Janotti A. and Wei S.H., “Polymorphism in CuInS2 epilayers: origin of additional Raman modes,” Appl. Phys. Lett., 80, p.562-564. (2002)
[40] J.J.M. Binsma, L.J. Giling, J. Bloem, “Phase relations in the system Cu2S-In2S3,” Journal of Crystal Growth, 50, p.429-436. (1980)
[41] Krunksa M, Bijakina O, Varema T, Mikli V, Mellikov E, “Structural and optical properties of sprayed CuInS2 films,” Thin Solid Films, 338, p.125-130. (1999)
[42] S.C. Abrahams, J.L. Bernstein, “Piezoeletric nonlinear optic CuGaS2 and CuInS2 crystal structure: Sublattice distortion in AⅠBⅢCⅥ2 and AⅡBⅣCⅤ2 type chalcopyrites,” J. Chem. Phys., 59, p.5415-5422. (1973)
[43] A. Rockett and R. W. Birkmire, “CuInSe2 for photovoltaic applications,” J. Appl. Phys., 70, p.81-97. (1991)
[44] H.J. Lewerenz, “Development of copperindiumdisulfide into a solar material,” Sol. Energy Mater. Sol. Cells, 83, p.395-407. (2004)
[45] F. Abou-Elfotouh, D. J. Dunlavy, T. J. Coutts, “Intrinsic defect states in CuInSe2 single crystals,” Solar Cells, 27, p.237-245. (1989)
[46] A. Slaoui and R. T. Collins, “Advanced inorganic materials for photovoltaics,” MRS Bull., 32, p.211-218. (2007)
[47] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire and W. N. Shafarman, “CuIn1-xAlxSe2 thin films and solar cells,” J. Appl. Phys., 91, p.10153-10156. (2002)
[48] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Progr. Photovolt.: Res. Appl., 16, p.235-239. (2008)
[49] S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire and W. N. Shafarman, “High-efficiency solar cells based on Cu(InAl)Se2 thin films,” Appl. Phys. Lett., 81, p.1350-1352. (2002)
[50] A. Katerskia, A. Merea, V. Kazlauskieneb, J. Miskinisb, A. Saarc, L. Matisenc, A. Kikasc, M. Krunksa, “Surface analysis of spray deposited copper indium disulfide films,” Thin Solid Films, 516, p. 7110–7115.(2008)
[51] G.H. Yue, X. Wang, L.S. Wang, W. Wang, D.L. Peng, “Synthesis of single crystal CuAlS2 nanowires via a low temperature direct polyol route,” Phys. Lett. A, 372, P. 5995–5998.(2008)
[52] S.H. Wei and A. Zunger, “Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys,” J. Appl. Phys., 78, p.3846-3856. (1995)
[53] A. E. Rakhshani, A. S. Al-Azab, “Characterization of CdS films prepared by chemical-bath deposition,” J. Phys. Condens. Matter, 12, p. 8745-8755.(2000)
[54] S. A. Al Kuhaimi, “Influence of preparation technique on the structural, optical and electrical properties of polycrystalline CdS films,” Vacuum , 12, p. 349-355.(1998)
[55] 林麗娟, “X光繞射原理及其應用”工業材料, 86, p.100-109. (1994)
[56] F. Sma¨ıli, “Growth of single-phase Cu(In, Al)S2 thin films by thermal evaporation,” Eur. Phys. J. Appl. Phys., 54, p. 10304.(2011)
[57] S. Ahn, C. Kim, Y. Chun, J. Yun, J. Lee, “Effects of heat treatments on the properties of Cu(In,Ga)Se2 nanoparticles,” Solar Energy Materials & Solar Cells., 91, p.1836-1841. (2007)
[58] S. Ahn, K. H. Kim, J. H. Yun, K. H. Yoon, “Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles,” Journal of Applied Physics., 105, p.113533-113533-7. (2009)
[59] Lin-Jer Chen, Jiunn-Der Liao, Yu-Ju Chuang, and Yaw-Shyan Fu, “Synthesis and Characterization of Cu(InxB1-x)Se2 Nanocrystals for Low-Cost Thin Film Photovoltaics,” J. Am. Chem. Soc., 133, p.3704-3707. (2011)
[60] Q. Guo, G. M. Ford, H. W. Hillhouse and R. Agrawal, “Sulfide Nanocrystal Inks for Dense Cu(In1−xGax)(S1−ySey)2 Absorber Films and Their Photovoltaic Performance,” Nano Lett., 9(8), p.3060-3065. (2009)
[61] D. Pan, X. Wang, Z. H. Zhou, W. Chen, C. Xu and Y. Lu, “Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps,” Chem. Mater., 21, p.2489-2493. (2009)
[62] Gebicki W, Igalson M, Zajac W and Trykozko R, “Growth and characterisation of CuAlxInl-xSe2 mixed crystals,” J. Phys. D: Appl. Phys., 23, p.964-965. (1990)
[63] Bodnar I. V., Tsyrelchuk I. N. and Victorov I .A., “Preparation and analysis of the CuAlxInl-xSe2 solid solutions,” J. Mater. Sci. Lett., 13, p.762-764. (1994)
[64] B. J. Stanbery, “Copper Indium Selenides and Related Materials for Photovoltaic Devices,” Crit. Rev. Solid State Mat. Sci., 27(2), p.73-113. (2002)
[65] B. D. Cullity, “Elements of Xray Diffraction”, Addison Wesley, p284. (1978)
[66] J. Lo´pez-Garcı´a, C. Maffiotte, C.Guille´n, “Wide-bandgap CuIn1-xAlxSe2 thin films deposited on transparent conducting oxides,” Solar Energy Materials & Solar Cells, 94, p. 1263-1269.(2010)
[67] A. Katerski, A. Mere, V. Kazlauskiene, J. Miskinis, A. Saar,L. Matisen, A. Kikas, M. Krunks , “Surface analysis of spray deposited copper indium disulfide films,” Thin Solid Films, 516, p. 7110-7115.(2008)
[68] T.Schulmeyer, R.Kniese, R.Hunger, W.Jaegermann, M.Powalla, A.Klein, “Influence of Cu(In,Ga)Se2 band gap on the valence band offset with CdS,” Thin Solid Films, 451-452, p.420-423.(2004)
[69] S. Marsillac, J.C. Bernede, C. El Moctar, J. Pouzet, “Physico-chemical characterization of CuAlSe2 films obtained by reaction, induced by annealing, between Se vapour and Al/Cu/AI…Cu/Al/Cu thin films sequentially deposited,” Materials Science and Engineering, 45, p.69-75.(1997)
[70] D. Q. Yang and E. Sacher, “Core/Shell Formation of Gold Nanoparticles Induced on Exposure to N, N-Dimethylformamide: Chemical and Morphological Changes,” J. Phys. Chem. C, 111, p. 14320-14326. (2007)
[71] L.L. kazmerski, “Photovoltaics: A review of cell and module technologies,” Renewable and sustainable energy review, 1, p.71-171. (1997)
[72] I.V. Bodnar, L.V. Golubev, V.G. Plotnichenko, E.A. Smolyaninova, “Raman Scattering in CuGaSe2,” Phys. Status Solidi B, 105, K111- K114. (1981)
校內:2018-08-22公開