簡易檢索 / 詳目顯示

研究生: 盧韋秀
Lu, Wei-Hsiu
論文名稱: Bi2Te3/Cu/Py介面銅層厚度變化對自旋電荷轉換效應之自旋幫浦研究
Spin-pumping study on the spin-charge conversion effect of copper layer thickness variation in Bi2Te3/Cu/Py
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 58
中文關鍵詞: 自旋幫浦自旋電荷轉換Bi2Te3Inverse Spin Hall effect
外文關鍵詞: Spin pumping, spin-to-charge conversion, Bi2Te3, Inverse Spin Hall effect
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中,是以MBE系統成長Bi2Te3於sapphire(0001)基板上,利用RHEED、XRD確認晶格、以及AFM做表面粗糙度的量測,確認薄膜的品質,且以sputter系統成長Py層,並在室溫下利用自旋幫浦(spin pumping)系統,在樣品上提供外加磁場和微波使鐵磁層發生鐵磁共振,此Py層傳遞一自旋角動量往Bi2Te3層,即為自旋流,而自旋流可在Bi2Te3層發生反轉自旋霍爾效應(Inverse spin Hall effect,ISHE),是為自旋幫浦。此文中掌握Bi2Te3為拓樸絕緣體的特殊量子效應,其表面態(Topological surface state)有更強的自旋耦合效應及自旋動量耦合效應等等優勢,故以此作為研究材料。為增加自旋流轉電流的效率,我們在介面加入銅傳輸層隔絕鐵磁層的磁性以保護拓墣表面態,並且在數據中發現明顯的電流增益,進而去改變銅厚度變化實驗,探討不同的銅層厚度在奈米尺度下自旋電荷的轉換效應。

    This experiment, Bi2Te3 was grown on the sapphire (0001) substrate by the MBE system, the energy band structure was determined by ARPES, the lattice was confirmed by XRD, and the surface roughness was measured by AFM to confirm the quality of the film, and the sputter system was used for growth Py layer, then using a spin pumping system at room temperature to provide an external magnetic field and microwave on the sample to generate ferromagnetic resonance in the ferromagnetic layer, this Py layer transfering a spin angular momentum to the Bi2Te3 layer, is spin current. However the spin current will generate the Inverse spin Hall effect (ISHE) in the Bi2Te3 layer, which is a spin pumping. This thesis grasps the special quantum effect of Bi2Te3 as a topological insulator, and its topological surface state has the advantages of stronger spin orbital coupling effect and spin-momentum coupling effect, so it is used as a research material. In order to increase the efficiency of spin current transfer, we added a copper transport layer to the interface to isolate the magnetism of the ferromagnetic layer to protect the topological surface state, and found an obvious current gain in the data. We discuss the spin-to-charge conversion effect of copper layer with different thickness at the nanoscale.

    摘要 I Abstract II 誌謝 IX 目錄 X 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 文獻一 2 1-2-2 文獻二 3 1-2-3 文獻三 5 第二章 實驗相關理論 9 2-1. 霍爾效應(Hall effect) 9 2-3. 反轉自旋霍爾效應(Inverse spin hall effect, ISHE) 11 2-4. Edelstein effect 12 2-5. Inverse Edelstein effect 14 2-6. 鐵磁共振與自旋幫浦機制(Ferromagnetic resonance and spin pumping mechanism) 15 第三章 實驗儀器與實驗流程 18 3.1 製程設備 18 3-1-1 離子束濺射(Ion Beam Sputtering, IBS)系統 18 3-2 實驗流程 21 3-2-1 金屬薄膜製程 22 3-2-2 自旋幫浦系統量測與數據分析 24 3-3 分析儀器 33 3-3-1 X射線繞射儀(X-Ray Diffractometer, XRD) 33 3-3-3 四點電阻量測(4-points probe method) 36 3-3-4 自旋幫浦系統(Spin pumping system) 37 第四章 實驗結果與討論 39 4-1 實驗架構 39 4-2 薄膜品質 40 4-2-1 XRD量測結果與分析 40 4-2-2 RHEED量測結果 41 4-2-2 AFM量測結果與分析 42 4-3鐵磁共振量測結果 43 4-4-2 Bi2Te3/Py與Bi2Te3/Cu/Py之自旋轉換效率比較 54 第五章 結論 56 參考文獻 57

    [1]王進威,中子粉末繞射簡介及其應用. 台灣物理學會-物理雙月刊. 2021.
    [2]李雅文, 磊晶(Sb1-xBix)2Te3/Ni80Fe90之自旋幫浦研究. 國立成功大學j物理學系學位論文. 2019.
    [3]楊仲準,. X光繞射分析技術與應用. 科儀新知 ; 182期 64-74. 2011
    [4]Barman, A., Sinha, J., Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. 2017.
    [5]Edelstein, V.M., Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Communications 73, 233-235. 1990.
    [6]Guo, G.Y., Murakami, S., Chen, T.W., Nagaosa, N., Intrinsic Spin Hall Effect in Platinum: First-Principles Calculations. Physical Review Letters 100, 096401. 2008.
    [7]Hirsch, J.E., Spin Hall Effect. Physical Review Letters 83, 1834-1837. 1999.
    [8]Hoffmann, A., Spin Hall Effects in Metals. IEEE Transactions on Magnetics 49, 5172-5193. 2013.
    [9]Jamali, M., Lee, J.S., Jeong, J.S., Mahfouzi, F., Lv, Y., Zhao, Z., Nikolić, B.K., Mkhoyan, K.A., Samarth, N., Wang, J.-P., Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3. Nano Lett 15, 7126-7132. 2015.
    [10]Jamali, M., Lee, J.S., Jeong, J.S., Mahfouzi, F., Lv, Y., Zhao, Z., Nikolić, B.K., Mkhoyan, K.A., Samarth, N., Wang, J.P., Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3. Nano Lett 15, 7126-7132. 2015.
    [11]Kane, C., Moore, J., Topological insulators. Physics World 24, 32-36. 2011.
    [12]Lesne, E., Fu, Y., Oyarzun, S., Rojas-Sánchez, J.C., Vaz, D.C., Naganuma, H., Sicoli, G., Attané, J.P., Jamet, M., Jacquet, E., George, J.M., Barthélémy, A., Jaffrès, H., Fert, A., Bibes, M., Vila, L., Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat Mater 15, 1261-1266. 2016.
    [13]Manipatruni, S., Nikonov, D.E., Lin, C.-C., Gosavi, T.A., Liu, H., Prasad, B., Huang, Y.-L., Bonturim, E., Ramesh, R., Young, I.A., Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35-42. 2019.
    [14]Nakayama, H., Ando, K., Harii, K., Yoshino, T., Takahashi, R., Kajiwara, Y., Uchida, K., Fujikawa, Y., Saitoh, E., Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni${}_{81}$Fe${}_{19}$/Pt films. Physical Review B 85, 144408. 2012.
    [15]Nan, T., Emori, S., Boone, C.T., Wang, X., Oxholm, T.M., Jones, J.G., Howe, B.M., Brown, G.J., Sun, N.X., Comparison of spin-orbit torques and spin pumping across NiFe/Pt and NiFe/Cu/Pt interfaces. Physical Review B 91, 214416. 2015.
    [16]Pan, B.-R., Study of the spin to change conversion in few-layer MoS2/Py and effect of coper transport inserted layer with spin pumping measurement. 國立成功大學物理學系學位論文, 23-24. 2021.
    [17]Pinon, S., Diedhiou, D., Gue, A.-M., Fabre, N., Prigent, G., Conedera, V., Rius, E., Quendo, C., Potelon, B., Favennec, J.F., Boukabache, A., Development of a microsystem based on a microfluidic network to tune and reconfigure RF circuits. Journal of Micromechanics and Microengineering - J MICROMECHANIC MICROENGINEER 22. 2012.
    [18]Prasad, B., Huang, Y.L., Chopdekar, R.V., Chen, Z., Steffes, J., Das, S., Li, Q., Yang, M., Lin, C.C., Gosavi, T., Nikonov, D.E., Qiu, Z.Q., Martin, L.W., Huey, B.D., Young, I., Íñiguez, J., Manipatruni, S., Ramesh, R., Ultralow Voltage Manipulation of Ferromagnetism. Adv Mater 32, e2001943. 2020.
    [19]Rojas-Sánchez, J.C., Oyarzún, S., Fu, Y., Marty, A., Vergnaud, C., Gambarelli, S., Vila, L., Jamet, M., Ohtsubo, Y., Taleb-Ibrahimi, A., Le Fèvre, P., Bertran, F., Reyren, N., George, J.M., Fert, A., Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: $ensuremath{alpha}$-Sn Films. Physical Review Letters 116, 096602. 2016.
    [20]Shubar, M., Saadon, H., Abbas, S., Studying of Nonlinear Optical Properties of Binary Bi2S3 and Bi2Te3/PMMA Nanocomposite Films by Z-Scan Technique. Journal of Physics: Conference Series 1234, 012059. 2019.
    [21]Su, S.H., Chuang, P.-Y., Lee, J.-C., Chong, C.-W., Li, Y.W., Lin, Z.M., Chen, Y.-C., Cheng, C.-M., Huang, J.-C.-A., Spin-to-Charge Conversion Manipulated by Fine-Tuning the Fermi Level of Topological Insulator (Bi1–xSbx)2Te3. ACS Applied Electronic Materials 3, 2988-2994. 2021.
    [22]Takahashi, S., Maekawa, S., Spin current, spin accumulation and spin Hall effect. Science and Technology of Advanced Materials 9, 014105. 2008.
    [23]Wang, G., Zhu, X.-G., Sun, Y.-Y., Li, Y.-Y., Zhang, T., Wen, J., Chen, X., He, K., Wang, L.-L., Ma, X.-C., Jia, J.-F., Zhang, S.B., Xue, Q.-K., Topological Insulator Thin Films of Bi2Te3 with Controlled Electronic Structure. Advanced Materials 23, 2929-2932. 2011.

    下載圖示 校內:2025-09-30公開
    校外:2025-09-30公開
    QR CODE