簡易檢索 / 詳目顯示

研究生: 王國賢
Wang, Guo-Shian
論文名稱: 利用非等向性濕蝕刻於絕緣層覆矽(SOI)上研製長週期波導光柵
Long-Period Waveguide Gratings on Silicon-on-Insulator(SOI) Substrates Fabricated by Anisotropic Wet Etching
指導教授: 莊文魁
Chuang, Ricky-Wenkuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 138
中文關鍵詞: 光波導濕式蝕刻長週期光柵極化偏振
外文關鍵詞: Optical waveguide, wet etching, long-period grating, polarization
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長週期光柵(Long-period grating, LPG)著重在基本波導模態(fundamental guided mode)和批覆層模態(cladding mode)之間的耦合特性。傳統上利用光纖來做長週期光柵會有幾何形狀和材料選擇上的限制,為了要消除光纖在製作上所面臨的限制和實現元件積體化,長週期波導光柵(Long period waveguide grating, LPWG)也因此被提出研究和實現。
    一般傳統長週期波導光柵是以低折射率材質建構完成,在本論文中,高折射率材料矽基材首度被用來探討長週期光波導光柵製作的可行性,主要考量的製程是以非等向性濕式蝕刻矽晶圓之技術,蝕刻並製作LPWG於絕緣層覆矽(SOI)晶圓上。製作長週期波導光柵主要是以矽脊狀波導作為光波導核心,其批覆層的材料則是利用電漿輔助式化學氣相沉積法(PECVD),藉由控制SiH4的流量,於SOI基板上沉積出一系列的非晶矽(a-Si)薄膜,並成功尋找一折射率接近矽卻又低於矽的非晶矽,以此做為元件批覆層,搭配長週期波導光柵之元件理論,計算出光柵週期。之後再利用濕式蝕刻克服塑膠光罩上線寬的限制,以其蝕刻之特性製做低於20μm之線寬,分別為20、18、15、12、10及8μm,成功降低了波導核心層之模態數目,並將相關參數導入於模擬軟體中,並設計出六組不同光柵週期之元件,分別為Λ20=100 μm、Λ18=107 μm、Λ15=93 μm、Λ12=95 μm、Λ10=109 μm和Λ8=91 μm。在後續的量測過程當中,其元件尚未導入偏振光時共振波長範圍皆在1563nm至1578nm之間,而在所有LPWG元件當中以線寬為8μm之元件對比度(contrast)為最佳,可達20dB,而半高全寬(FWHM)則以線寬為10μm之元件的表現為最佳,約為3.3nm。而加入極化控制器後產生極化偏振光,共振波長範圍亦在1563nm至1580nm之間,於橫向電場極化中,以線寬為8μm之元件對比度達30dB為最佳,而半高全寬則以線寬為12μm之元件以1.76nm為最窄;於橫向磁場極化中,以線寬為10μm之元件對比度14.5dB為最深,而半高全寬則以線寬為10μm之元件以1.32nm表現為最佳。

    Long-period gratings (LPGs) are functioned based on the light coupling between the core guiding modes and the cladding modes at specific wavelengths (resonance wavelengths). However, the conventional FBG implemented on the optical fiber inevitably faces the geometry and material constraints associated with the fiber, which impose significant limitations on the device functionalities. To bypass the foregoing constraints, a long-period waveguide grating (LPG) employing a waveguide structure has been developed instead to provide an additional flexibility needed in designing various LPG-based devices.
    In general, the traditional long-period waveguide gratings were manufactured using low refractive index materials. In this thesis, high-refractive index silicon was used for the first time to explore its practicality for the long-period waveguide gratings fabrication. Specifically, the device was etched and patterned on SOI wafer via an anisotropic wet etching technique and eventually the long-period waveguide gratings were successfully fabricated with silicon ridge waveguide incorporated as an optical waveguide core layer. In addition, the cladding layer based on amorphous silicon with refractive index slightly lower than the crystalline silicon was deposited using plasma-enhanced chemical vapor deposition (PECVD) by judiciously controlling the flow rate of SiH4. With the amorphous silicon used as the cladding layer, the gratings with pitch as long as tens of micrometer could now be defined and patterned using the conventional photolithography. As mentioned previously, the wet etching was adopted to overcome the line width restriction entailed by the use of a much cheaper plastic mask; making the device feature size less than 20μm easily realizable, specifically, waveguides with a line width of 20, 18, 15, 12, 10 and 8μm had all been successfully fabricated to cut down the number of guided modes present in the core region. Additionally, a commercial software was used to design gratings with six different pitches needed, namely, Λ20=100μm, Λ18=107μm, Λ15=93μm, Λ12=95μm, Λ10=109μm and Λ8=91μm. The subsequent experimental results demonstrate that the LPWG devices appear to resonate within a wavelength range between 1563 and 1578nm, and the waveguide width of 8μm has delivered a dip contrast as high as 20 dB, while the device with the waveguide width of 10μm has its FWHM measured as narrow as 3.3nm. Then the experimental results with polarization controller inserted into the measurement setup show that the devices resonate within a wavelength range between 1563 and 1580nm, and the waveguide width of 8μm has delivered a dip contrast as high as 30 dB, while the device with the waveguide width of 12μm has its FWHM measured as narrow as 1.76nm with input light polarized as transverse electric (TE) wave. With transverse magnetic (TM) polarized wave provided as an input, the waveguide width of 10μm yields a dip contrast as high as 14.5 dB, while the device with the waveguide width of 10μm has its FWHM measured as narrow as 1.32nm.

    中文摘要 I 英文摘要 III 致謝 VI 目錄 VIII 表目錄 XII 圖目錄 XIV 第一章 序論 1.1 光通訊簡介 1 1.2 矽光學積體電路 4 1.3 研究動機 5 1.4 論文架構 6 參考文獻 7 第二章 長週期光柵 2.1 導論 9 2.2 長週期光纖光柵(Long-period fiber gratings, LPFGs) 10 2.2.1 光學濾波器製作於長週期光纖光柵 14 2.3 長週期波導光柵(Long-period waveguide gratings, LPWGs) 16 參考文獻 18 第三章 非等向性濕蝕刻 3.1 導論 24 3.2 非等向性-濕式蝕刻 24 3.2.1 濕式蝕刻之反應機制 25 3.2.2 蝕刻液之種類 28 3.2.3 遮罩材料之選擇 32 3.2.4 蝕刻終止技術 34 3.3 非等向性濕式蝕刻於矽晶圓之運用 37 3.3.1 非等向性濕式蝕刻於矽(100)晶圓之實作 37 3.3.1.1 濕蝕刻矽(100)晶圓KOH濃度測試 40 3.3.1.2 濕蝕刻矽(100)晶圓KOH加入IPA測試 46 3.3.2 非等向性濕式蝕刻於矽(110)晶圓之實作 52 3.3.2.1 濕蝕刻矽(110)晶圓KOH濃度測試 54 3.3.2.2 濕蝕刻矽(110)晶圓KOH加入IPA測試 60 3.4 濕式蝕刻結論 66 參考文獻 67 第四章 長週期波導光柵模擬設計與製作流程 4.1 導論 70 4.2 元件設計之目的 70 4.2.1 波導層與批覆層之模態有效折射率 72 4.2.2 光柵間距之模擬與計算 73 4.3 元件製作 78 4.3.1 元件基材之差異 78 4.3.2 元件製作流程 80 4.3.3 蝕刻矽晶圓 82 4.3.4 PECVD沉積非晶矽(a-Si)薄膜 84 4.3.5 抛光研磨 85 4.3.6 光場量測 86 第五章 長週期波導光柵穿透頻譜之特性分析 5.1 導論 89 5.2 穿透頻譜(Transmission spectrum )之量測與分析 89 5.2.1 長週期波導光柵濾波器之 Matlab 模擬 92 5.2.2 波導線寬20μm之LPWG穿透頻譜分析 94 5.2.3 波導線寬18μm之LPWG穿透頻譜分析 99 5.2.4 波導線寬15μm之LPWG穿透頻譜分析 104 5.2.5 波導線寬12μm之LPWG穿透頻譜分析 109 5.2.6 波導線寬10μm之LPWG穿透頻譜分析 114 5.2.7 波導線寬8μm之LPWG穿透頻譜分析 119 5.3 分析與探討 124 5.3.1 共振波長之分析 124 5.3.2 對比強度與半高寬之結果 126 第六章 結論與未來進展 6.1 結論 130 6.2 未來進展與應用 133 6.2.1 T型特殊波導之製作 135 參考文獻 137

    第一章 參考文獻
    [1] S. E. Miller, “Integrated optics: An introduction,”Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
    [2] F. Kane and Robert R. Krchnavek, “Beazocyclobutene optical waveguide,” IEEE Photo. Tech. Lett., vol. 7, No. 5, pp. 535-537, 1995.
    [3] G. H. Olsen, “InGaAsP laser diodes,”Opt. Eng., vol. 20, pp. 440-445, 1981.
    [4] T. Miya, T. Hosaka, Y. Terunuma, and T. Miyashita, “Ultra low loss single-mode fibers at 1.55 μm,”Rev. Electrical Commun. Lab., vol. 27, pp. 497-506, 1979.
    [5] P. Hall and P. Kaiser, “Vibrational mode assignments,”Appl. Phys. Lett., vol. 23, pp. 45-46, 1973.
    [6] H. Nishihara, M. Haruna, and T. Suhara, Optical integrated circuits. New York: McGraw-Hill Book Company, 1989.
    [7] R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers,”Electron. Lett., vol. 21, pp. 738-740, 1985.
    [8] S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions,”Electron. Lett., vol. 21, pp. 737-738, 1985.
    [9] R. M. Emmons, B. N. Kurdi, and D. G. Hall, “Buried-oxide silicon -on-insulator structures 1: optical waveguide characteristics,”IEEE J. Quant. Electron., vol. 28, pp. 157-163, 1992.
    [10] M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, “All-silicon avalanche photodiode sensitive at 1.3μm with picosecond time resolution,”IEEE J. Quant. Electron., vol. 28, pp. 2678-2681, 1992.
    [11] A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “A miniaturizable Si-based electro-optical modulator working at 1.5μm,”Appl. Phys. Lett., vol. 86, pp.201115-1-201115-3, 2004.
    [12] Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,”IEEE Photon. Technol. Lett., vol. 9, pp. 1113-1115, 1997.
    [13] Liu, R. Jones, L. Liao, D. S. Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,”Nature., vol. 427, pp.615-618, 2004.

    第二章 參考文獻
    [1] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,”J .Lightwave Technol., vol. 14, pp. 58-65, Jan. 1996.
    [2] Vikram Bhatia, David Campbell, and Richard O. Claus, “Simultaneous strain and temperature measurement with long-period gratings,”Opt. Lett., vol. 22, pp. 648-650, May 1997.
    [3] Mei Nar Ng, Zhihao Chen, and Kin Seng Chiang,, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,”IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
    [4] A. W. Snyder, “Coupled-mode theory for optical fibres,”J. Opt. Soc. Am., vol. 62, pp. 1267-1972, Nov. 1972.
    [5] Kenneth O. Hill and Gerald Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,”J. Lightwave Technol, vol. 15, pp. 1263-1276, Aug.1997.
    [6] D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling,”IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
    [7] S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fibre bandpass filter based on hollow optical fibre and long-period grating pair,”IEEE Photon. Technol. Lett., vol. 17, pp. 115–117, 2005.
    [8] K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, “Coupling between two parallel long-period fibre gratings,”Electron. Lett., vol. 36, pp. 1408–1409, Aug. 2000.
    [9] De-Long Zhang, Yun Zhang, Yu-Ming Cui, and Cai-He Chen, E.Y.B. Pun, “Long period grating in / on planar and channel waveguides: A theory description,”Opt. Laser Technol., vol. 39, pp. 1204–1213, Sep. 2007.
    [10] K.S. Chiang, C.K. Chow, H.P. Chan, Q. Liu, and K.P. Lor, “Widely tunable polymer long-period waveguide grating with polarization insensitive resonance wavelength,”Electron. Lett., vol. 40, pp. 422-424, Apr. 2004.
    [11] Qing Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,”Appl. Phys. Lett., vol. 86, 241115, Jun. 2005.
    [12] X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,”J. Lightwave Technol, vol. 20, pp. 255-266, Feb. 2002.
    [13] M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect,”IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
    [14] M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,”Opt. Commun., vol. 208, pp. 321-327, July 2002.
    [15] X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,”IEEE Photon. Technol. Lett., vol. 13, pp. 818-820, Aug. 2001.
    [16] S. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,”Opt. Lett., vol. 21, pp. 336-338, Mar. 1996.
    [17] P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band Erbium-doped fiber amplifer flattened beyond 40 nm using long-period grating filter,”IEEE Photon. Technol. Lett., vol. 9, pp. 1343-1345, Oct. 1997.
    [18] J. R. Qian and H. F. Chen, “Gain flatterning fiber filters using phase shifted long period fiber gratings,”Electron. Lett., vol. 34, pp. 1132-1133, May 1998.
    [19] M. Harumoto, M. Shigehara, M. Kakui, H. Kanamori, and M. Nishimura, “Compact long-period grating module with multi-attenuation peaks,”Electron. Lett., vol. 36, pp. 512-514, Mar. 2000.
    [20] X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,”Microwave. Opt. Technol. Lett., vol. 35, pp. 283-286, May 2002.
    [21] A. P. Zhang, X. W. Chen, Z. G. Guan, S. L. He, H. Y. Tam, and W. H. Chung, “Optimization of step-changed long-period gratings for gain flattening of EDFAs,”IEEE Photon. Technol. Lett., vol. 17, pp. 121-123, Jan. 2005.
    [22] C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,”Opt. Eng., vol. 43, pp.342-345, Feb. 2004.
    [23] K. W. Chung and S. Z. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,”Microwave. Opt. Technol. Lett., vol. 45, pp. 18-21, Feb. 2005.
    [24] P. G. Greene and H. N. Rourke, “Tailoring long period optical fibre gratings for flattening EDFA gain spectra,”Electron. Lett., vol. 35, pp. 1373-1374, 1999.
    [25] M. Harumoto, M. Shigehara, and H. Suganuma, “Gain-flattening filter using long-period fiber gratings,”J. Lightwave Technol., vol. 20, pp. 1027-1033, May 2002.
    [26] D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling,”IEEE Photon. Technol. Lett., vol. 10, pp. 1590-1592, Nov. 1998.
    [27] V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,”Appl. Opt., vol. 41, pp. 6351–6355, Oct. 2002.
    [28] Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,”J. Lightwave Technol., vol. 21, pp. 3399–3405, Dec. 2003.
    [29] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,”IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003.
    [30] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,”Electron. Lett., vol. 40, pp. 422–424, Apr. 2004.
    [31] H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,”Appl. Phys. B, vol. 79, pp. 95–98, 2004.
    [32] Q. Liu, K. S. Chiang, and K. P. Lor, “Long-period gratings in polymer ridge waveguides,”Optics Express, vol. 13, pp. 1150–1160, Feb. 2005.
    [33] Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,”Appl. Phys. Lett., vol. 86, 2441115, Jun. 2005.
    [34] A. Perentos, G. Kostovski, and Arnan Mitchell, “Polymer Long-Period Raised Rib Waveguide Gratings Using Nano-Imprint Lithography,”IEEE Photon. Technol. Lett. , vol. 17, pp. 2595–2597, Dec. 2005.
    [35] M. S. Kwon and S. Y. Shin, “Tunable Polymer Waveguide Notch Filter Using a Thermooptic Long-Period Grating,”IEEE Photon. Technol. Lett. , vol. 17, pp. 145–147, Jan. 2005.
    [36] K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-Rejection Filter With Widely Tunable Center Wavelength and Contrast Using Metal Long-Period Grating on Polymer Waveguide,”IEEE Photon. Technol. Lett. , vol. 18, pp. 1109–1111, May 2006.
    [37] Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of Corrugated Long-Period Gratings in Slab Waveguides and Their Polarization Dependence,”J. Lightwave Technol., vol. 21, pp. 3339–3405, Dec. 2003
    [38] S. Pal and B. R. Singh, “Analysis and Design of Corrugated Long-Period Gratings in Silica-on-Silicon Planar Waveguides,”J. Lightwave Technol., vol. 25, pp. 2260–2267, Aug. 2007.
    [39] S. Pal, A. Chauhan, M. Singh, P. Kumar, M. Sharma, N. Pradhan, K. Singh and C. Dhanavantri, “Realization of Long-Period Corrugated Grating in Silica-on-Silicon-Based Channel Waveguide,”IEEE Photon. Technol. Lett. , vol. 21, pp. 1490–1492, Oct. 2009.
    [40] J. Jiang, C. L. Callender, and C. J. Ledderhof, ”Corrugation-Induced SiO2 Planar Long-Period Gratings for Photonic Applications,”IEEE Photonics Technol. Lett, vol. 20, pp. 520-522, July 2010.
    [41] W. Jin, K. S. Chiang, and Q. Liu, “Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate,”Opt. Exp., vol. 16, pp. 20409-20417, Dec. 2008.
    [42] W. Jin, K. S. Chiang, and Q. Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching,”Opt. Lett., vol. 35, pp. 484-486, Feb. 2010.
    [43] W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, “Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings,”IEEE Photonics Technology Letters, vol. 20, July 15, 2008.
    [44] Ping-Rang Hua, De-Long Zhang, and Edwin Yue-Bun Pun,“Long-Period Grating on Strip Ti : LiNbO3 Waveguide Embedded in Planar Ti : LiNbO3 Waveguide,”IEEE Photonics Technology Letters, vol. 22 , Sep. 15, 2010
    [45] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,”Appl. Phys. Lett., vol. 86, 241115, Jun. 2005.

    第三章 參考文獻
    [1] S. M. Sze, “Semiconductor Device : Physics and Technology, ”JOHN WILEY, 2002.
    [2] 莊達人, VLSI製造技術, 高立圖書有限公司
    [3] F. S.-S. Chien,C.-L. Wu, Y.-C. Chou, T. T. Chen, and S. Gwo, “ Nanomachining of 110-oriented silicon by scanning probe lithography and anisotropic wet etching, ”Applied Physics Letters, vol. 75, no. 16, 2010.
    [4] Peter J. Hesketh, Chishein Ju and Sanjay Gowda, “Surface Free Energy Model of Silicon Anisotropic Etching, ”Journal of the Electrochemical Society, vol. 140, pp. 1080-1085, Apr. 1993.
    [5] R. M. Finne and D. L. Klein, “A Water-Amine-Complexing Agent System for Etching Silicon, ”Journal of the Electrochemical Society, vol. 114, pp. 965-970, Sep. 1967.
    [6] X. P. Wu and W. H. Ko, “Compensating corner undercutting in anisotropic etching of (100) silicon, ”Sensors and Actuators, vol. 18, pp. 207-215, June 1989.
    [7] H. Seidel, “ The mechanism of anisotropic silicon etching and its relevance for micromachining, ” Tech. Didest, 4th Int. Conf. Solid-Slate Sensors and Actuators, pp. 120-125, June 1987.
    [8] J. B. Price, “Anisotropic Etching of Silicon with KOH-H2O-Isopropyl Alcohol, ” in Semiconductor Silicon, Electrochemical Society Proceeding, 1973.
    [9] Irena Zubel and Irena Barycka, “Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si (100) in various solutions, ”Sensors and Actuators A: Physical, vol. 70, pp. 250-259, Oct. 1998.
    [10] Irena Zubel, “Silicon anisotropic etching in alkaline solutions II. On the influence of anisotropy on the smoothness of etched surfaces, ”Sensors and Actuators A: Physical, vol. 70, pp. 260-268, Oct. 1998.
    [11] Irena Zubel, “Silicon anisotropic etching in alkaline solutions III. On the possibility of spatial structures forming in the course of Si (100) anisotropic etching in KOH and KOH + IPA solutions, ”Sensors and Actuators A: Physical, vol. 84, pp. 116-125, Aug. 2000.
    [12] Irena Zubel, Irena Barycka, Kamilla Kotowska, and Malgorzata Kramkowska, “Silicon anisotropic etching in alkaline solutions IV: The effect of organic and inorganic agents onsilicon anisotropic etching process, ”Sensors and Actuators A: Physical, vol. 87, pp. 163-171, Jan. 2001.
    [13] Irena Zubel and Malgorzata Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions, ”Sensors and Actuators A: Physical, vol. 93, pp. 138-147, Sep. 2001
    [14] Oliver Powell and H Barry Harrison, “Anisotropic etching of { 100 } and { 110 } planes in (100) silicon, ”J. Micromech. Microeng., vol. 11, pp. 217-220, Feb. 2001.
    [15] S. A. Campbell, S. N. Port, and D. J. Schifrin, “Anisotropy and the Micromachining of Silicon, ” in Semiconductor Silicon,2, West Sussex England : John Wiley & Sons, Ltd., 1998.
    [16] Ylva Backlund and Lars Rosengren, “New shapes in (100) Si using KOH and EDP etches, ”J. Micromech. Microeng., vol. 2, pp. 75-79, June 1992.
    [17] http://www.cleanroom.byu.edu/wet_etch.phtml
    [18] N. F. Raley, Y. Sugiyama, and T. Van Duzer, “(100) Silicon Etch-Rate Dependence on Boron Concentration in Ethylenediamine Pyrocatechol Water Solutions, ”J. Electrochem Soc., vol. 131, pp. 161-171, Jan. 1984.
    [19] E. D. Palik, V. M. Bermudez, and O. J. Glembocki, “ Ellipsometric Study of the Etch-Stop Mechanism in Heavily Doped Silicon, ”J. Electrochem Soc., vol. 132, pp. 135-141, Jan. 1985.
    [20] E. Bassous, “Fabrication of Novel Three-Dimensional Microstructures by the Anisotropic Etching of (100)and (110) Silicon, ”IEEE Trans. on Electron. Devices, vol. 25, pp. 1178-1185, Oct. 1978.
    [21] H. Guckel, S. Larsen, M. G. Lagally, G. Moore and J. B. Miller, “Electromechanical devices utilizing thin Si diaphragms, ”Appl. Phys. Lett. vol. 31, pp. 618-619, Nov. 1977.
    [22] Irena Barycka and Irena Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant, ”Sensors and Actuators A: Physical, vol 48, pp. 229–238, Jan. 1995.

    第六章 參考文獻
    [1] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization insensitive resonance wavelength,”Electron. Lett., vol. 40, pp. 422–424, Apr. 2004.
    [2] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,”Appl. Phys. Lett., vol. 86, 2441115, June, 2005.
    [3] A. Perentos, G. Kostovski, and Arnan Mitchell, “Polymer Long-Period Raised Rib Waveguide Gratings Using Nano-Imprint Lithography,”IEEE Photon. Technol. Lett. , vol. 17, pp. 2595–2597, Dec. 2005.
    [4] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,”IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003.
    [5] S. Pal, A. Chauhan, M. Singh, P. Kumar, M. Sharma, N. Pradhan, K. Singh, and C. Dhanavantri, “Realization of Long-Period Corrugated Grating in Silica-on-Silicon-Based Channel Waveguide,”IEEE Photon. Technol. Lett. , vol. 21, pp. 1490–1492, Oct. 2009.
    [6] J. Jiang, C. L. Callender, and C. J. Ledderhof, ”Corrugation-Induced SiO2 Planar Long-Period Gratings for Photonic Applications,”IEEE Photonics Technol. Lett, vol. 20, pp. 520-522, July, 2010.
    [7] Wei Jin, Kin Seng Chiang, and Qing Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching,”Opt. Lett. , vol. 35, no. 4 , Feb. 15, 2010.
    [8] W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, “Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings,”IEEE Photonics Technology Letters, vol. 20, no. 14, July 15, 2008.
    [9] Ping-Rang Hua, De-Long Zhang, and Edwin Yue-Bun Pun,,“Long-Period Grating on Strip Ti : LiNbO3 Waveguide Embedded in Planar Ti : LiNbO3 Waveguide,”IEEE Photonics Technology Letters, vol. 22, no. 18, Sep. 15, 2010

    無法下載圖示 校內:2017-11-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE