| 研究生: |
陳又肇 Chen, Yu-Chao |
|---|---|
| 論文名稱: |
拖船人員排班策略分析-以高雄港為例 The scheduling of tugboat crew analysis- a case study of Kaohsiung port |
| 指導教授: |
張瀞之
Chang, Ching-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 拖船 、人員排班 、最佳化 、公平性 、加班費 |
| 外文關鍵詞: | Tugboat, Staff scheduling, Optimization, Equality, Overtime |
| 相關次數: | 點閱:191 下載:34 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著經濟的蓬勃發展,企業規模的不斷擴大,人力成本亦逐漸升高,如何透過有效地排班來降低人事成本,是各企業不可忽視的課題,尤其對於24小時全年無休的行業,班表的公平性也成為排班的重點項目。本研究以臺灣港務港勤公司(以下簡稱港勤公司)之拖船人員排班為個案分析。目前港勤公司以人工的方式來排班,然人工排班不僅缺乏效率,也容易衍生公平性問題,此外,港勤公司目前的排班方式為人船固定,即船員必須固定於某一艘拖船上執勤,然而,該現行方式不僅缺乏彈性,更是造成工作超時而衍生加班費的主要原因。有鑑於此,本研究提出人船分離之新排班方式,船員不再固定於某一艘拖船,而是以船員的法定工時為基礎,將船員配置到不同值勤時間的拖船上執勤,根據不同種的拖船配置,本研究將分成三種情境做探討,接著建構人員排班的數學模型,最後以最佳化軟體LINGO來求解最小化加班費與最佳化班表。
研究結果顯示,(1)在加班費方面,經過最佳化後,原排班方式能減少52%以上的加班費,若能改以新排班方式,則能減少100%的加班費;(2)在加班時數方面,經過最佳化後,原排班方式能減少52%以上的加班時數,若能改以新排班方式,則能減少100%的加班時數;(3)在排班時間方面,目前人工排班方式完成班表初稿時間需要2到3天,經過最佳化後,不論原排班方式或新排班方是皆能在30秒內完成班表初稿(4)在班表方面,目前人工排班方式具有規律性,而新排班方式則有較佳的排班彈性與公平性。
最後,本研究建議新排班方式可以漸進式實施,並且搭配每日船員可調度名單,以符合實際需求,未來可以加入拖船服務水準、船員滿意度以及納入國定假日,使班表更全面性與實用性。
With the recent development of the global economy, the scale of enterprises has been rapidly expanding and thus the cost of manpower has been gradually increasing, which becomes an important issue that enterprises can hardly ignore. In this study, the tugboat personnel of TIPC Marine (TIPM) were used as an example to explore how to minimize staff costs by using a more effective staff scheduling method. We first proposed a new scheduling method to replace the original one, and then built a mathematical model of scheduling to solve the scheduling problems via optimization software, LINGO11.0. The results showed that scheduling optimization can reduce overtime hours and costs by at least 52%, and complete the first scheduling draft within 30 seconds. If such method is applied, overtime hours and costs can be significantly reduced by 100%; In addition, the new scheduling method has a better scheduling flexibility and fairness but less regularity. Therefore, optimized scheduling can not only reduce overtime costs and hours, but also save time for those in charge of staff scheduling. If this new scheduling method is adopted, it not only helps reach the ideal scheduling state where zero overtime costs and hours can be achieved, but also enhance the fairness of the staff scheduling.
Ağralı, S., Taşkın, Z. C., & Ünal, A. T. (2016). Employee scheduling in service industries with flexible employee availability and demand. Omega.
Ásgeirsson, E. I. (2014). Bridging the gap between self schedules and feasible schedules in staff scheduling. Annals of Operations Research, 218(1), 51-69.
Azadeh, A., Farahani, M. H., Eivazy, H., Nazari-Shirkouhi, S., & Asadipour, G. (2013). A hybrid meta-heuristic algorithm for optimization of crew scheduling. Applied Soft Computing, 13(1), 158-164.
Chen, M., & Niu, H. (2012). A model for bus crew scheduling problem with multiple duty types. Discrete Dynamics in Nature and Society, 2012.
Cuevas, R., Ferrer, J.-C., Klapp, M., & Muñoz, J.-C. (2016). A mixed integer programming approach to multi-skilled workforce scheduling. Journal of Scheduling, 19(1), 91-106.
Defraeye, M., & Van Nieuwenhuyse, I. (2016). A branch-and-bound algorithm for shift scheduling with stochastic nonstationary demand. Computers & Operations Research, 65, 149-162.
Edie, L. C. (1954). Traffic delays at toll booths. Journal of the operations research society of America, 2(2), 107-138.
Enz, C. A. (2009). Key issues of concern in the lodging industry: What worries managers.
Erdoğan, G., Haouari, M., Matoglu, M. Ö., & Özener, O. Ö. (2015). Solving a large-scale crew pairing problem. Journal of the Operational Research Society, 66(10), 1742-1754.
Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European journal of operational research, 153(1), 3-27.
Hanafi, R., & Kozan, E. (2014). A hybrid constructive heuristic and simulated annealing for railway crew scheduling. Computers & Industrial Engineering, 70, 11-19.
Horn, M. E., Jiang, H., & Kilby, P. (2007). Scheduling patrol boats and crews for the Royal Australian Navy. Journal of the Operational Research Society, 58(10), 1284-1293.
Li, H., & Womer, K. (2009). A decomposition approach for shipboard manpower scheduling. Retrieved from
Lloy's List (2016). One Hundred Container Ports 2016. Retrieved from https://www.lloydslist.com/ll/incoming/article534477.ece#row
Ma, J., Ceder, A. A., Yang, Y., Liu, T., & Guan, W. (2015). A case study of Beijing bus crew scheduling: a variable neighborhood‐based approach. Journal of Advanced Transportation.
Mou, D., & Zhao, W. (2013). An irregular flight scheduling model and algorithm under the uncertainty theory. Journal of Applied Mathematics, 2013.
Nishi, T., Sugiyama, T., & Inuiguchi, M. (2014). Two-level decomposition algorithm for crew rostering problems with fair working condition. European journal of operational research, 237(2), 465-473.
Parisio, A., & Jones, C. N. (2015). A two-stage stochastic programming approach to employee scheduling in retail outlets with uncertain demand. Omega, 53, 97-103.
Rocha, M., Oliveira, J. F., & Carravilla, M. A. (2013). Cyclic staff scheduling: optimization models for some real-life problems. Journal of Scheduling, 16(2), 231-242.
Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., & De Boeck, L. (2013). Personnel scheduling: A literature review. European journal of operational research, 226(3), 367-385.
Wermus, M., & Pope, J. A. (1994). Scheduling harbor pilots. Interfaces, 24(2), 44-52.
Wong, T., Xu, M., & Chin, K. (2014). A two-stage heuristic approach for nurse scheduling problem: A case study in an emergency department. Computers & Operations Research, 51, 99-110.
WU, W., HU, Y., HASHIMOTO, H., ANDO, T., SHIRAKI, T., & YAGIURA, M. (2016). A column generation approach to the airline crew pairing problem to minimize the total person-days. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 10(3), JAMDSM0040-JAMDSM0040.
交通部統計處. (2016). 進出口貨品運保費統計報告. 臺北.
行政院主計總處. (2016). 薪資與生產力統計年報. 臺北: 行政院主計總處.
林詩芹. (2003). 以限制規劃構建全年無休服務人員排班模式-以客服人員排班為例. (碩士), 國立交通大學, 新竹.
武翠芳. (2010). 智慧型排班系統之設計-以服務業為例. (碩士), 國立中央大學, 桃園.
勞動部. (2016a). 受僱員工-工作時數. 勞動情勢及業務統計資料庫 Retrieved Sep 27, 2016, from 勞動部 http://statdb.mol.gov.tw/statis/jspProxy.aspx?sys=210&funid=mq00
勞動部. (2016b, Sep 21). 基本工資之制訂與調整經過. Retrieved from http://www.mol.gov.tw/topic/3067/5990/13171/19154/
經濟合作暨發展組織(OECD). (2016). Average annual hours actually worked OECD-iLibrary. Retrieved from http://www.oecd-ilibrary.org/employment/data/hours-worked/average-annual-hours-actually-worked_data-00303-en
經濟部中小企業處. (2009). 中小企業之經營動向. Retrieved from http://www.moeasmea.gov.tw/dl.asp?filename=012610514271.pdf
蘇允晟. (2014). 港勤拖船調度排班的模擬分析-以高雄港為例. 長榮大學.