| 研究生: |
粘文欣 Nian, Wun-Hsin |
|---|---|
| 論文名稱: |
以早期引發渦流促進T形微流道中之混合 Early induction of vortices for mixing enhancement in T-shaped microchannel |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 微流體力學 、渦流引發接頭 、T形微混合器 、粒子反向追跡 、捲入流動 |
| 外文關鍵詞: | microfluidics, vortex-inducing junction, T-shaped micromixers, particle tracking, engulfment flow |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出結合渦流引發接頭及平面T形流道形成之微混合器,使流體在第一混合流道產生渦流,當流體到達T形接頭時,讓帶有渦流之流體匯入主流道,以促進流體混合。由於網格法的網格尺寸不夠小,在高培克萊特數下,會有數值擴散的影響,為解決此問題,本研究使用結合流體粒子反向追跡與擴散模式的解法與反向隨機漫步蒙地卡羅法來模擬流體的混合,所得結果顯示兩種模擬能互相驗證。本研究結果顯示,將T形流道入口處接上渦流引發接頭,流體進入主流道前已具渦流,會使渦流加速,當流體進入主流道後能夠增加橫向對流,以促進混合。當雷諾數為130至160,主流道橫截面發展出由兩側渦流結構帶動中央渦流,相較於三個渦流結構能有較好的混合效果。渦流引發接頭同側兩入口注入兩種不同流體,藉由兩流體在早期就增加流體接觸面積,使混合效率增加。最後,本微混合器能在較低的雷諾數下發生捲入流動。與平面T形微混合器相比當雷諾數為120至140,出口混合度相差超過20倍之多,但壓降才相差1.3倍;當雷諾數最高為160時,出口混合度相差了四倍左右,但壓降卻只多了1.4倍,所以此微混合器有較好的混合表現。
We propose a micromixer constructed by combining vortex-inducing junctions and a planar T-shaped microchannel. The eddies induced by vortex-inducing junctions in the confluent flow into main microchannel may enhance fluid mixing. To reduce numerical diffusion under high Peclet number, a particle tracking method with the diffusion model proposed by Matsunaga is applied to simulate fluid mixing. The results show that injecting two different fluids into both inlets of vortex-inducing junctions will enhance mixing by increasing the interfacial surface between the fluids in early time. Besides, this micromixer increases the area of the interfacial surface between the fluids effectively and causes engulfment flow at lower Reynolds number.
[1] A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[2] N.-T. Nguyen and Z. Wu, “Micromixers—a review,” Journal of Micromechanics and Microengineering, vol. 15, R1-R16, 2005.
[3] C.-Y. Lee, W.-T. Wang, C.-C. Liu, and L.-M. Fu, “Passive mixers in microfluidic systems: A review,” Chemical Engineering Journal, vol. 288, pp. 146-160, 2016.
[4] L. Capretto, W. Cheng, M. Hill, and X. Zhang, “Micromixing within microfluidic devices,” Microfluidics: Technologies and Applications, vol. 304, pp. 27-68, 2011.
[5] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, and G. M. Whitesides, “Chaotic mixer for microchannels ,” Science, vol. 295, pp. 647-651, 2002.
[6] A. Afzal and K.-Y. Kim, “Passive split and recombination micromixer with convergent–divergent walls,” Chemical Engineering Journal, vol. 203, pp. 182-192, 2012.
[7] J. M. Miranda, H. Oliveira, J. A. Teixeira, A. A. Vicente, J. H. Correia, and G. Minas, “Numerical study of micromixing combining alternate flow and obstacles,” International Communications in Heat and Mass Transfer, vol. 37, pp. 581-586, 2010.
[8] Y. Lin, X. Yu, Z. Wang, S.-T. Tu, and Z. Wang, “Design and evaluation of an easily fabricated micromixer with three-dimensional periodic perturbation,” Chemical Engineering Journal, vol. 171, pp. 291-300, 2011.
[9] W. R. Dean, “Note on the motion of a fluid in a curved pipe,” Philosophical Magazine, vol. 4, pp. 208-223, 1927.
[10] A. Gigras, S. Pushpavanam, “Early induction of secondary vortices for micromixing,” Microfluidics and Nanofluidics, vol. 5, pp. 89-99, 2008.
[11] D. Gobby, P. Angeli, and A. Gavriilidis, “Mixing characteristics of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, vol. 11, pp. 126-132, 2001.
[12] N. Kockmann, C. Föll, and P. Woias, “Flow regimes and mass transfer characteristics in static micro mixers,” Proceedings of SPIE, vol. 4982, pp. 319-329, 2003.
[13] D. Bothe, C. Stemich, and H.-J. Warnecke, “Fluid mixing in a T-shaped micro-mixer,” Chemical Engineering Science, vol. 61, pp. 2950-2958, 2006.
[14] C. Galletti, M. Roudgar, E. Brunazzi, and R. Mauri, “Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer,” Chemical Engineering Science, vol. 63, pp. 5291-5297, 2008.
[15] M. Roudgar, E. Brunazzi, C. Galletti, and R. Mauri, “Numerical study of split T‐Micromixers,” Chemical Engineering and Technology, vol. 35, pp. 1291-1299, 2012.
[16] M. A. Ansari, K.-Y. Kim, K. Anwar, and S. M. Kim, “Vortex micro T-mixer with non-aligned inputs,” Chemical Engineering Journal, vol. 181-182, pp. 846-850, 2012.
[17] T. Matsunaga and K. Nishino, “Swirl-inducing inlet for passive micromixers,” RSC Advances, vol. 4, pp. 824-829, 2014.
[18] C. A. Cortes-Quiroz, A. Alireza, M. Zangeneh, “Evaluation of flow characteristics that give higher mixing performance in the 3-D T-mixer versus the typical T-mixer,” Sensors and Actuators B: Chemical, vol. 202, pp. 1209-1219, 2014.
[19] C. A. Cortes-Quiroz, A. Alireza, M. Zangeneh, “Effect of channel aspect ratio of 3-D T-mixer on flow patterns and convective mixing for a wide range of Reynolds number,” Sensors and Actuators B: Chemical, vol. 239, pp. 1153-1176, 2016.
[20] R. Rabani, S. Talebi, and M. Rabani, “Numerical analysis of lamination effect in a vortex micro T-mixer with non-aligned inputs,” Heat and Mass Transfer, vol. 52, pp. 611-619, 2016.
[21] 賴炳豪(2015),「T-接頭具入口流道渦流引發擋塊之微混合器的績效數值研究」,國立成功大學機械工程研究所碩士論文,臺南,臺灣。
[22] 簡聿政(2016),「具分合流道與雙T形接頭的微混合器」,國立成功大學機械工程研究所碩士論文,臺南,臺灣。
[23] T. Matsunaga, K. Shibata, K. Murotani, and S. Koshizuka, “Hybrid grid-particle method for fluid mixing simulation,” Computational Particle Mechanics, vol. 2, pp. 233-246, 2015.
[24] T. Matsunaga, H. J. Lee, and K. Nishino, “An approach for accurate simulation of liquid mixing in a T-shape micromixer,” Lab on a Chip, vol. 13, pp. 1515-1521, 2013.
[25] V. Özceyhan and M. Sen, “Particle-tracking random-walk computation of high- Peclet-number convection,” Numerical Heat Transfer, Part A, vol. 50, pp. 607-622, 2006.
[26] S. A. Rani, B. Pitts, and P. S. Stewart, “Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy,” Antimicrobial Agents and Chemotherapy, vol. 49, pp. 728-732, 2005.
[27] C. Galletti, M. Roudgar, E. Brunazzi, and R. Mauri, “Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer,” Chemical Engineering Science, vol. 63, pp. 5291-5297, 2008.
[28] C. Nonino, S. Savino, and S. D. Giudice, “Numerical assessment of the mixing performance of different serpentine microchannels,” Heat Transfer Engineering, vol. 30, pp. 101-112, 2009.
[29] A. Nealen, “An as-short-as-possible introduction to the least squares,weighted least squares and moving least squares methods for scattered data approximation and interpolation,” Computer Methods in Applied Mechanics and Engineering, vol. 130, 150 (3 pages), 2004.
[30] J. L. Bentley, “Multidimensional binary search trees used for associative Searching,” Communications of the ACM, vol. 18, pp. 509-517, 1975.
[31] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching in fixed dimensions,” Journal of the ACM (JACM), vol. 45, pp. 891-923, 1998.
[32] T. Most and C. Bucher, “A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions,” Structural Engineering and Mechanics, vol. 21, pp. 315-332, 2005.
[33] M. F. Modest, Radiative heat transfer, 3rd ed. New York: Academic Press, 2013.