簡易檢索 / 詳目顯示

研究生: 翁婕渝
Weng, Chieh-Yu
論文名稱: 探討CPAP蛋白在 IL6/STAT3的功能性角色
Functional characterization of CPAP in IL6/STAT3 pathway
指導教授: 洪良宜
Huang, Liang-Yi
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 中心體蛋白CPAP白細胞介素6號IL6訊息傳遞轉錄因子3號STAT3肝癌
外文關鍵詞: CPAP, IL6, STAT3, HCC
相關次數: 點閱:111下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中心體蛋白CPAP (Centrosomal P4.1-associated protein)除了參與中心體的功能,同時也扮演共同轉錄活化子(co-transcriptional activator)的角色,可以幫助NF-κB以及STAT5的轉錄活性。在發炎環境下,細胞介素6號(IL6)會透過細胞的表面受器,驅動細胞內的訊息傳遞轉錄活化因子3號(STAT3),進而促進其下游基因的轉錄表現。根據我們先前的研究顯示,在肝癌細胞中,CPAP會參與活化IL6/STAT3這條訊息調控路徑,但其分子機制尚不清楚。在本論文中,我們發現在IL6刺激之下,CPAP蛋白與STAT3會相互作用。進一步利用共同免疫沉澱反應,以及原位PLA分析,我們找到了CPAP蛋白與STAT3相互作用的位置。此外,我們也發現一個蛋白片段N66,具有dominant-negative調控IL6/STAT3的能力。透過細胞實驗、動物實驗,以及血管新生實驗,我們發現N66可以經由抑制IL6/STAT3,抑制其下游所驅動之基因表現,進而抑制肝癌細胞的生長以及血管新生。總之,我們的研究不只找到CPAP與STAT3相互結合的位置,同時也發現一蛋白片段,可以dominant-negative調控由IL6/STAT3所活化的下游基因表現及其所衍生的生理功能。

    SUMMARY

    Our previous results indicated that CPAP could promote angiogenesis through increased expression of IL8 and/or VEGF by IL6/STAT3 pathway in HCC. Here, by co-immunoprecipitation assay and in situ proximity ligation assay (PLA), we found that CPAP directly interacts with STAT3 upon IL6 stimulus; and the interacting domain between CPAP and STAT3 has mapped as well. On the other hand, we found a potential peptide - N66, which can dominantly inhibit the IL6-mediated STAT3 activation. HCC cells with N66 expression have a lower ability in cell proliferation and colony formation. Matrigel plug assay and xenograft animal model further support the dominant-negative effect of N66. Taken together, these results suggested that CPAP transcriptionally co-activates STAT3 through direct interacting with STAT3 upon IL6 stimulus; and N66 plays a dominant-negative role to decrease the activation of IL6/STAT3 in HCC.

    Keywords: CPAP, IL6, STAT3, HCC.

    INTRODUCTION
    Centrosomal P4.1-associated protein (CPAP) plays an important role in transcriptional co-activation of NF-κB, STAT3 and STAT5. Our previous results indicated that overexpressed CPAP promotes the malignancies of HCC cells through enhancing the activation of IL6/STAT3 pathway. In this thesis, the effects and underlying molecular mechanism of how CPAP contributes to the increased activation of IL6/STAT3 pathway were under investigation.

    MATERIALS AND METHODS
    Reporter assay and Western blot analysis were performed to determine the effects of CPAP or N66 in IL6/STAT3 pathway. STAT3-driven reporter assay was studied in Huh7 and Hep3B cells. The interaction domain between CPAP and STAT3 was determined by co-immunoprecipitation and in situ proximal ligation assay (PLA). The cell proliferation ability was analyzed by CCK-8, BrdU incorporation and colony formation assay, as well as xenograft animal experiment. Trans-well assay and plug assay were used to determine the effect of CPAP or N66 in angiogenesis.

    RESULTS
    CPAP promotes the activation of STAT3 and its downstream effects, such as cell proliferation and angiogenesis, in response to IL6 stimulus. A potential peptide, N66, reduces the effects of IL6/STAT3-mediated cell proliferation and angiogenesis in HCC.

    CONCLUSION
    Our results suggest that CPAP transcriptionally co-activates STAT3 through direct interaction upon IL6 treatment; and N66 has a dominant-negative effect in decreasing the IL6/STAT3-induced HCC carcinogenesis.

    (I) Abstract in Chinese I (II) Abstract II (III) Acknowledgements V (IV) Contents VI (V) Abbreviations VII (VI) Introduction 1-8 (VII) Motivation and Objective 9 (VIII) Purpose 10 (IX) Materials and Methods 11-23 (X) Results 24-30 (XI) Conclusion 31 (XII) Discussion 32-33 (XIII) References 34-39 (XIV) Figures 40-66 (XV) Appendices 67-70

    1. Hung L-Y, Tang C-JC, Tang TK. Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the γ-tubulin complex. Molecular and cellular biology. 2000;20(20):7813-25.

    2. Peng B, Sutherland KD, Sum EY, Olayioye M, Wittlin S, Tang TK, et al. CPAP is a novel stat5-interacting cofactor that augments stat5-mediated transcriptional activity. Molecular Endocrinology. 2002;16(9):2019-33.

    3. Akira S. Functional roles of STAT family proteins: lessons from knockout mice. Stem cells. 1999;17(3):138-46.

    4. Walker SR, Nelson EA, Zou L, Chaudhury M, Signoretti S, Richardson A, et al. Reciprocal effects of STAT5 and STAT3 in breast cancer. Molecular Cancer Research. 2009;7(6):966-76.

    5. Zhong Z, Wen Z, Darnell J. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994;264(5155):95-8.

    6. Koyanagi M, Hijikata M, Watashi K, Masui O, Shimotohno K. Centrosomal P4. 1-associated protein is a new member of transcriptional coactivators for nuclear factor-κB. Journal of Biological Chemistry. 2005;280(13):12430-7.

    7. Yang S-T, Yen C-J, Lai C-H, Lin Y-J, Chang K-C, Lee J-C, et al. SUMOylated CPAP is required for IKK-mediated NF-κB activation and enhances HBx-induced NF-κB signaling in HCC. Journal of hepatology. 2013;58(6):1157-64.

    8. Lim CP, Cao X. Structure, function, and regulation of STAT proteins. Molecular biosystems. 2006;2(11):536-50.

    9. Shuai K, Ziemiecki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, et al. Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. 1993.

    10. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nature Reviews Cancer. 2014;14(11):736-46.

    11. Darnell JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415-21.

    12. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annual review of biochemistry. 1998;67(1):227-64.

    13. Bromberg J. Signal transducers and activators of transcription as regulators of growth, apoptosis and breast development. Breast Cancer Research. 2000;2(2):86.

    14. Konjević G, Vuletić A, Martinović KM, Radenković S, Srdic T, Jurišić V. STAT Transcription Factors in Tumor Development and Targeted Therapy of Malignancies: INTECH Open Access Publisher; 2013.

    15. Scott MJ, Godshall CJ, Cheadle WG. Jaks, STATs, cytokines, and sepsis. Clinical and diagnostic laboratory immunology. 2002;9(6):1153-9.

    16. Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nature Reviews Cancer. 2004;4(2):97-105.

    17. Tuteja N. Signaling through G protein coupled receptors. Plant signaling & behavior. 2009;4(10):942-7.

    18. Xin H, Lu R, Lee H, Zhang W, Zhang C, Deng J, et al. G-protein-coupled receptor agonist BV8/prokineticin-2 and STAT3 protein form a feed-forward loop in both normal and malignant myeloid cells. Journal of Biological Chemistry. 2013;288(19):13842-9.

    19. Zareparsi S, Buraczynska M, Branham KE, Shah S, Eng D, Li M, et al. Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Human molecular genetics. 2005;14(11):1449-55.

    20. Kortylewski M, Kujawski M, Herrmann A, Yang C, Wang L, Liu Y, et al. Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy. Cancer research. 2009;69(6):2497-505.

    21. Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell. 1989;58(3):573-81.

    22. Schröder A. " Inhibition of the IL6/STAT3 Signaling Pathway for Therapeutic Intervention in Prostate Carcinogenesis and Cancer Cell Differentiation: RWTH Aachen University; 2013.

    23. Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang W-C, et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer cell. 2013;23(1):107-20.

    24. Huang L, Hu B, Ni J, Wu J, Jiang W, Chen C, et al. Transcriptional repression of SOCS3 mediated by IL6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. Journal of Experimental & Clinical Cancer Research. 2016;35(1):1.

    25. Darnell JE. Transcription factors as targets for cancer therapy. Nature Reviews Cancer. 2002;2(10):740-9.

    26. Thomas S, Snowden J, Zeidler M, Danson S. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. British journal of cancer. 2015;113(3):365-71.

    27. Britschgi A, Andraos R, Brinkhaus H, Klebba I, Romanet V, Müller U, et al. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer cell. 2012;22(6):796-811.

    28. Sultan AS, Xie J, LeBaron MJ, Ealley EL, Nevalainen MT, Rui H. Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene. 2005;24(5):746-60.

    29. Tan S-H, Dagvadorj A, Shen F, Gu L, Liao Z, Abdulghani J, et al. Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells. Cancer research. 2008;68(1):236-48.

    30. Hossain DMS, Dos Santos C, Zhang Q, Kozlowska A, Liu H, Gao C, et al. Leukemia cell–targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity. Blood. 2014;123(1):15-25.

    31. Yang L, Wang L, Lin H-K, Kan P-Y, Xie S, Tsai M-Y, et al. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochemical and biophysical research communications. 2003;305(3):462-9.

    32. Ferenci P, Fried M, Labrecque D, Bruix J, Sherman M, Omata M, et al. Hepatocellular carcinoma (HCC): a global perspective. Journal of clinical gastroenterology. 2010;44(4):239-45.

    33. Cabibbo G, Craxi A. Epidemiology, risk factors and surveillance of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 2010;14(4):352-5.

    34. Chuang S-C, La Vecchia C, Boffetta P. Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer letters. 2009;286(1):9-14.

    35. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014;63(5):844-55.

    36. Befeler AS, Di Bisceglie AM. Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology. 2002;122(6):1609-19.

    37. Davis GL, Dempster J, Meler JD, Orr DW, Walberg MW, Brown B, et al., editors. Hepatocellular carcinoma: management of an increasingly common problem. Baylor University Medical Center Proceedings; 2008: Baylor University Medical Center.

    38. Thomas MB, Zhu AX. Hepatocellular carcinoma: the need for progress. Journal of Clinical Oncology. 2005;23(13):2892-9.

    39. Liu M, Jiang L, Guan X-Y. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein & cell. 2014;5(9):673-91.

    40. Mazzaferro V, Battiston C, Perrone S, Pulvirenti A, Regalia E, Romito R, et al. Radiofrequency ablation of small hepatocellular carcinoma in cirrhotic patients awaiting liver transplantation: a prospective study. Annals of surgery. 2004;240(5):900-9.

    41. Vivarelli M, Guglielmi A, Ruzzenente A, Cucchetti A, Bellusci R, Cordiano C, et al. Surgical resection versus percutaneous radiofrequency ablation in the treatment of hepatocellular carcinoma on cirrhotic liver. Annals of surgery. 2004;240(1):102-7.

    42. Gish RG, Finn RS, Marrero JA. Extending survival with the use of targeted therapy in the treatment of hepatocellular carcinoma. Gastroenterology & hepatology. 2013;9(4 Suppl 2):1.

    43. Yang B-L, Yeh C, Hsu C-T, Chang T-Y, Wang C-Y. Advanced hepatocellular carcinoma treated by a combination of sorafenib and radiotherapy. Advances in Digestive Medicine. 2014;1(1):25-9.

    44. Hirano T. Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir. Proceedings of the Japan Academy Series B, Physical and biological sciences. 2010;86(7):717.

    45. Biffl WL, Moore EE, Moore FA, Peterson VM. Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Annals of surgery. 1996;224(5):647.

    46. Wong VWS, Yu J, Cheng ASL, Wong GLH, Chan HY, Chu ESH, et al. High serum interleukin‐6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. International journal of cancer. 2009;124(12):2766-70.

    47. Giannitrapani L, Cervello M, Soresi M, Notarbartolo M, Rosa M, Virruso L, et al. Circulating IL‐6 and sIL‐6R in Patients with Hepatocellular Carcinoma. Annals of the New York Academy of Sciences. 2002;963(1):46-52.

    48. Zhuang P-Y, Wang J-D, Tang Z-H, Zhou X-P, Quan Z-W, Liu Y-B, et al. Higher proliferation of peritumoral endothelial cells to IL6/sIL6R than tumoral endothelial cells in hepatocellular carcinoma. BMC cancer. 2015;15(1):1.

    49. Caetano MS, Zhang H, Cumpian AM, Gong L, Unver N, Ostrin EJ, et al. IL6 Blockade Reprograms the Lung Tumor Microenvironment to Limit the Development and Progression of K-ras–Mutant Lung Cancer. Cancer research. 2016;76(11):3189-99.

    50. Li X, Tang Z, Zhou G. [Expression of vascular endothelial growth factor correlates with invasion and metastasis of hepatocellular carcinoma]. Zhonghua zhong liu za zhi [Chinese journal of oncology]. 1998;20(1):12-4.

    51. Reddy Chichili VP, Kumar V, Sivaraman J. Linkers in the structural biology of protein–protein interactions. Protein Science. 2013;22(2):153-67.

    52. George RA, Heringa J. An analysis of protein domain linkers: their classification and role in protein folding. Protein Engineering. 2002;15(11):871-9.

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE