| 研究生: |
周子軒 Chou, Tzu-Hsuan |
|---|---|
| 論文名稱: |
POP散熱行為之參數分析 Parametric Anaysis of POP Thermal Performance |
| 指導教授: |
吳俊煌
Wu, Gien-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | POP 、熱傳路徑 |
| 外文關鍵詞: | POP, heat path, POP Thermal Performance |
| 相關次數: | 點閱:101 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
而隨著對於電子產品效能的需求,要如何在有限空間內放入更多電子元件則成了現今發展的重點。POP(Package on Package)技術就是一種發展出來的解決辦法,利用已經完成的封裝體(Package)在三維空間(高度)透過回焊將封裝體堆疊,形成三維系統封裝(3D system in Package SiP),以達到更高密度封裝以及減少尺寸等目的。
本論文使用ANSYS 15.0以有限元素法針對POP探討其熱傳路徑,並透過分析出來的熱傳路徑改善其熱傳效率。構裝體元件包含了基板(Substrate)、錫球(Solder Ball)、晶片(Chip)、封膠(Modling Compound)、散熱孔(Thermal Via)、印刷電路基板(Print Circuit Bpard PCB)。
Parametric Anaysis of POP Thermal Performance
Tzu Hsuan Chou
Jun-Huang Wu
Department of Mechanical Engineering of National Cheng Kung University
SUMMARY
This paper is divided into five chapters. The first chapter includes the introduction of BGA and POP packaging, the literature review. The second chapter is theoretical analysis, including elastic theory analysis, nonlinear convergence criterion, the viscoelastic material mechanics model, heat conduction and thermal convection, heat radiation. The third chapter is the model establishment and analysis, including the establishment of POP body model, modeling analysis process and parameter setting. The fourth chapter is for the results and discussion analysis, including the analysis of POP heat transfer path, different material parameters and structural thickness analysis. The fifth chapter is for the conclusions and future prospects.
Keywords: POP, heat path, POP Thermal Performance
INTRODUTION
In this paper, ANSYS 15.0 is used to study the heat transfer path of POP by finite element method, and its heat transfer efficiency is improved by analyzing the heat transfer path. Substrate components include Substrate, Solder Ball, Chip, Molding Compound, Thermal Via, and Print Circuit Board PCB.
MATERIAL AND METHOD
In this paper, ANSYS 15.0 finite element analysis software is used to analyze the POP structure by finite element theory. The material properties are linear and non-linear materials, and the solution of transient and steady state is obtained.
The assumptions used in the analysis are as follows: 1. The ball is a viscoplastic material; the sealant is a viscoelastic material; the heat sink, the wafer, the substrate and the printed circuit board are linear materials. 2. The package itself has no initial stress, regardless of the process of residual stress process. 3. All contact surfaces are completely intact and have no cracks or impurities inside. 4. The structure itself does not absorb water vapor or the temperature change caused by the Popcorn Effect. 5. Regardless of the gravity effect arising from the quality of the purchased body. 6. Due to model symmetry, a quarter model is used to shorten the time. 7. The symmetry plane is adiabatic and the shear stress is zero.
In this paper, the conditions of analysis include natural convection and forced convection, and the thermal convection coefficient using Ellison's empirical formula for the thermal convection coefficient of small electronic components on a flat plate is used as heat transfer simulation analysis
RESULTS AND DISCUSSTION
In the case of nature convection, less heat of the chip will transfer to the air by convection, most of the heat will transfer from the thermal vias and solder balls to the PCB. The heat of memory chip will go through the innermost of solder balls, then transfers to the lower substrate and PCB by thermal vias. The heat of logic chip will go through thermal vias, then transfers to the PCB by the innermost of solder balls.
We change the materials and structure of substrate and PCB to analyze the influence of cooling efficiency. The KZZ of the substrate is more influential than KXX, because the heat path is down to the PCB. The KXX of the PCB is more influential than KZZ, because PCB is the end of the heat path.
CONCLUSION
It’s important to find the heat path of the POP. If we need to cost down, we can know the significant part to change the material.
1. In the heat transfer, the heat transfer of the wafer after the heat transfer path is mainly through the closest to the wafer of the ball passed to the bottom of the final transmission to the PCB, and then contact the air with the PCB and a large area of convection heat transfer.
2. In the substrate and PCB base material, for the memory chip, the effect of improving the longitudinal heat transfer coefficient of the substrate than the transverse heat transfer coefficient of the effect is more significant. But the lower substrate temperature is higher, and with the end of the heat path (PCB) is closer, and the number of rows of solder balls, and thus the effect of lateral heat transfer coefficient change is more significant.
3. PCB to improve the effect of lateral heat transfer rate than the vertical heat transfer effect is more obvious, because the PCB is the end of the heat path, and then by the large area and the convection heat convection, and because the PCB and the wafer Is not in direct contact, so when the heat dissipation coefficient increases or decreases, the logic chip and memory chip in the same coefficient, the respective temperature change ratio will vary.
4. Because the sealant is in direct contact with the wafer and has 5 faces to the wafer, the effect of improving the heat transfer coefficient is most obvious.
5. The height of the substrate signal layer changes for the logic of the chip is relatively large.
6. PCB thickness of the copper layer, because the PCB and the two wafers is not directly in contact with the logic chip and memory chip image is similar, but the logic of the PCB by the copper layer will be slightly less than the memory chip.
7. For the composition of this paper, the PCB cooling of the 2-layer board is poor, and the heat dissipation to the 4-layer board has reached the limit, the effect is very obvious when the board is increased to 6 layers.
8. Increase the heat sink for the memory chip cooling effect is most significant, the temperature decreased by 2.636%, but for the logic chip is only reduced by 0.2655%.
9. If there is already a heat sink plate, the thickness of the heat sink> viscose coefficient> viscose thickness> heatsink coefficient is compared with the original part of the structure.
[1] Henry_Chiang (西元2008年2月5日)。挾多項優勢 BGA商機可期 傳統封裝將漸趨勢微【NCKU布丁的家】。取自http://blog.xuite.net/henry_chiang/twblog
/126955718-BGA%E7%94%A2%E6%A5%AD%E5%89%96%E6%9E%90
[2] Thea Lu (2017, January 5). How to Place and Test BGA on PCB boards?. Retrieved from https://www.linkedin.com/pulse/how-place-test-bga-pcb-boards-thea
-lu
[3] 無 (西元2013年9月19日)。CBGA【台灣WORD】。取自http://www.twword.com/wiki/CBGA
[4] Tarter T S, Goetz M P and Pagageorge M: 'BGA performance characteristics: a users design guide'. Proc of Tech Programme, SMI, 1995, 245-254.
[5] 無 (西元2013年8月29日)。PBGA封裝【台灣WORD】。取自http://www.twword.com/wiki/PBGA%E5%B0%81%E8%A3%9D
[6] SMT104 (西元2008年10月9日)。BGA介紹-2【SMT的部落格】。取自http://blog.udn.com/SMT104/2279366
[7] 陳建銘 (2005)。無鉛錫球封裝晶片之掉落衝擊測試(碩士論文)。取自台灣博碩士論文知識加值系統。
[8] 無 (西元2013年9月18日)。BGA封裝技術【台灣WORD】。取自http://www.twword.com/wiki/BGA%E5%B0%81%E8%A3%9D%E6%8A%80%E8%A1%93
[9] 無 (無)。PCB-IC基板產品結構圖【Money DJ 理財網】。取自http://newjust.masterlink.com.tw/HotProduct/HTML/Basic.xdjhtm?A=PA113-1.HTML
[10] none (none). Definition of: CSP. PC magazine. Retrieved from http://www.pcmag.com/encyclopedia/term/40540/csp
[11] Retuta, D., Ma, Y.Y., Kanth, R., Tan, H.B., Sun, A., and Tanary, S., Thermal Performance Enhancement for CSP Packages, Proc 57th Electronic Components and Technology Conf, Reno, NV, USA, May-June. 2007, pp. 1690-1695.
[12] 李洵穎 (西元2010年11月26日)。晶圓級封裝【DIGITIMES】。取自http://www.digitimes.com.tw/tech/dt/n/shwnws.asp?id=0000209633_k7w5qshe4qobrb25onxqp
[13] Wes Hansford (西元2008年7月7日)。從封裝技術看半導體設計技術進展。電子工程專輯,製造/封裝。取自http://archive.eettaiwan.com/www.eettaiwan.com
/ART_8800532923_480202_TA_c61b7a8a.HTM
[14] goodfunny (無)。PoP封裝(Package on Package)【Money DJ 理財網】。取自https://www.moneydj.com/KMDJ/Wiki/wikiViewer.aspx?keyid=f03a7466-91c8-4ab6-a1ad-7dbc9d495366
[15] 工作熊 (西元2014年7月9日)。電路板PCB板材的結構與功用介紹【電子製造,工作狂人】 。 取自http://www.researchmfg.com/2014/07/pcb-material-
structure/
[16] P. SUN, V. C. K. LEUNG, D. YANG, D. X. Q. SHI, "Development of A Novel Cost Effective Package-on-Package (PoP) Solution", Proceeding of ICEPT-HDP 2009, 2009.
[17] 無 (西元2015年)。POP-Interposer【Phoenix Pioneer technology】。取自http://www.ppt.com.tw/page/product/show.aspx?num=98&kind=3
[18] 無 (西元2015年10月30日)。新一代層疊封裝(PoP)的發展趨勢及翹曲控制【20ic】。取自http://power.21ic.com/poc/technical/201510/43194_2.html
[19] 杜振宇 (西元2015年6月2日)。系統級封裝結合內嵌式PCB存在供應鏈問題 扇出型晶圓級封裝將成先進封裝技術發展要點 【DIGITIMES】。取自http://digitimes.com.tw/tech/rpt/rpt_show.asp?cnlid=3&v=20150602-201
[20] 無 (無)。未來移動通信系統採用的積體電路晶圓級封裝。北美智權報,115。
[21] Richard Crisp (西元2008年5月6日)。為手持裝置尋找微縮外形尺寸的元件整合技術。電子工程專輯,測試與測量。取自http://archive.eettaiwan.com/www
.eettaiwan.com/ART_8800520201_480402_TA_47622439.HTM
[22] Miaowen Chen, Leo Huang, George Pan, Nicholas Kao, Don Son Jiang, “Thermal Analyses of a Package-on-Package(POP) Structure for Tablet Application” , 2014 IEEE 16th Electronics Packaging Technology Conference(EPTC)
[23]Xiang Qiu, Jun Wang, "Study on Heat Dissipation in Package On Package (POP) ", 11th International Conference on Electronic Packaging Technology & High Density Packaging, 2010.
[24] 吳輔庭“The Analysis of the thermal chraracterization and fatigue of package-on-package(pop) assembly”國立成功大學,2012
[25] G. Z. Wang, Z. N. Cheng, K. Becker, J. Wilde, “Applying Anand Model toRepresent the Viscoplastic Deformation Behavior of Solder Alloys”, Journal of Electronic Packaging, Vol.123, pp.247-253, 1998.
[26] Atila Mertol,Member“Thermal Performance Comparison of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages ” IEEE Transactions on Components, Packaging,and Manufacturing Technology-Part B, Vol. 19,No.2,pp.427-443,1996
[27] Z. Ge, K. Wang, K. Duan, "Numerical simulation and thermal analysis of PoP packaging", Electronic Packaging Technology (ICEPT) 2015 16th International Conference, pp. 1438-1443, 2015.
[28] Moody Dreiza, Akito Yoshida, Jonathan Micksch, Lee Smith, "堆疊式封裝層疊(PoP)設計指南", 電子工程專輯, October 2005.
[29] K.W. Shim, and W.Y. Lo, “Solder Fatigue Modeling of Flip-Chip Bumps in Molded Packages”, IEEE International Electronic Manufacturing Technology, pp. 109-114, 2006.
[30] K. Biswas, S. Liu, X. Zhang, T.C. Chai, “Effects of detailed substrate modeling and solder layout design on the 1^st and 2^nd level solder joint reliability for the large die FCBGA”, IEEE International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1-7, 2008.
[31] H.U. Akay, Y. Liu, M.Tassaian, “Simplification of Finite Element Models for Thermal Fatigue Life Prediction of PBGA Packages”, ASME Journal of Electronic Packaging, Vol.125, pp.347-353, 2003.
[32] J.H. Lau, X. Zhang, S.K.W. Seah, K. Vaidyanathan, T.C. Chai, “Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and their Flip-Chip Microbumps”, IEEE Electronic Components and Technology Conference, pp.1073-1081, 2008.
[33] M. Pei and J. Qu, “Constitutive Modeling of Lead-Free Solders” , IEEE Advanced Packaging Materials: Processes, Properties and Interfaces, pp.45-49, 2005.
[34] Kar Wei Shim, Wai Yew Lo, "Solder Fatigue Modeling of Flip-Chip Bumps in Molded Package", IEEE,2006.
[35] Wei Lin, Min Woo Lee, "PoP/CSP Warpage Evaluation and Viscoelastic Modeling", Electronic Components and Technology Conference, 2008.
[36] Xiang Qiu, Jun Wang, "Study on Heat Dissipation in Package On Package (POP) ", 11th International Conference on Electronic Packaging Technology & High Density Packaging, 2010.
[37] 無(西元2015年10月26日)。C2iM 量產將使得載板材料技術三分天下:
ABF/BT/C2iM。取自http://www.ppt.com.tw/upload/news/201510260911000.pdf
[38] 無(無)。PCB小教室-PCB結構的種類【帝量電子有限公司】。取自http://www.yu-tech.com.tw/edcontent.php?lang=tw&tb=5&id=5
[39] 工作熊 (西元2010年11月1日)。FPC結構—雙面板及多層板【電子製造,工作狂人】。取自http://www.researchmfg.com/2010/11/fpc-structure-double-side
-multi-layer/
[40] Abhilash R. Menon, Saket Karajgikar, Dereje Agonafer, "Thermal Design Optimization of a Package On Package", 25th IEEE SEMI-THERM Symposium, 2009.