| 研究生: |
嚴翊綺 Yen, Yi-Chi |
|---|---|
| 論文名稱: |
探究AI口說輔助系統採用對T語言機構績效之評估 Investigating the Impact of Adopting an AI-assisted Speaking System on the Performance of T Language Institution |
| 指導教授: |
林軒竹
Lin, Hsuan-Chu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 人工智能輔助語言學習 、英語口語能力 、教育科技 、家長滿意度 、課外補習教育 、補習班 、EZTalking |
| 外文關鍵詞: | AI-Assisted Language Learning, English Oral Proficiency, Educational Technology, Parental Satisfaction, Shadow Education, Cram School, EZTalking |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討將人工智能輔助口說系統EZTalking整合到台灣T語言機構課程中的效果。這在政府推動2030年雙語化的背景下尤為重要。研究聚焦於三個主要成果:營運績效的提升、教育成果(特別是英語口語能力)以及家長滿意度。研究採用混合方法,結合了實施前後英語能力測驗的量化分析、財務數據分析,以及家長滿意度調查。
結果顯示,採用EZTalking人工智能輔助口說系統顯著提高了學生的英語口語能力,實施後的測試分數呈現統計學上的顯著增長(p < .001)。財務分析揭示了營運效率的提升,包括來自新入學和系統使用費的收入增加。此外,家長滿意度顯著提高,所有調查項目的平均分數都超過5分中的4.5分,反映出家長對學習過程中技術增強的讚賞。
這些發現凸顯了人工智能輔助工具在教育環境中革新語言學習和營運管理的潛力。重要的是,這些發現與更廣泛的教育政策和市場期望相符。本研究為人工智能在教育領域的研究做出了貢獻,並為考慮類似技術整合的語言機構提供了實用的見解。
This study uniquely investigates the effects of integrating the AI-assisted speaking system, EZTalking, into the curriculum of T Language Institution in Taiwan. This is particularly significant in light of the government's push towards bilingualism by 2030. The research focuses on three primary outcomes: operational performance enhancement, educational outcomes—particularly in English oral proficiency—and parental satisfaction. A mixed-methods approach was employed, combining quantitative analysis of pre-and post-implementation English proficiency tests, financial data analysis, and a parental satisfaction survey.
Results indicate that adopting the EZTalking AI-assisted speaking system significantly improved students' oral English skills, with post-implementation test scores showing a statistically significant increase (p < .001). Financial analysis revealed enhanced operational efficiencies, including increased revenue streams from new enrollments and system usage fees. Additionally, parental satisfaction was notably high, with mean scores above 4.5 out of 5 across all survey items, reflecting appreciation for the technological enhancements to the learning process.
These findings underscore the potential of AI-assisted tools to revolutionize language learning and operational management in educational settings. Importantly, they align with broader educational policies and market expectations. The study contributes to the growing body of research on AI in education and offers practical insights for language institutions considering similar technological integrations.
1. Appel, C., & Mullen, T. (2000). Pedagogical considerations for a web-based tandem language learning environment. Computers & Education, 34 (3-4), 291–308.
2. Baran-Lucarz, M. (2011). The relationship between language anxiety and the actual and perceived levels of foreign language pronunciation. Studies in Second Language Learning and Teaching, 1(4), 491-514. https://doi.org/10.14746/ssllt.2011.1.4.3
3. Byman Frisén, L., Sundqvist, P., & Sandlund, E. (2021). Policy in practice: Teachers’ conceptualizations of L2 English oral proficiency as operationalized in high-stakes test assessment. *Languages, 6(4), 204. https://doi.org/10.3390/languages6040204
4. Chen, L., Zhang, R., & Liu, C. (2014). Listening strategy use and influential factors in web-based computer-assisted language learning. Journal of Computer Assisted Learning*. https://doi.org/10.1111/jcal.12041
5. Choi, I.-C. (2016). Efficacy of an ICALL tutoring system and process-oriented corrective feedback. Computer Assisted Language Learning, 29(2), 334–364. https://doi.org/10.1080/09588221.2014.960941
6. Coleman, J. A., & Klapper, J. (2005). Effective Learning and Teaching in Modern Language. Taylor & Francis Group.
7. EZ AI. (n.d.). EZ AI Company. Retrieved May 22, 2024, from http://www.ez-ai.com.tw
8. Fantuzzo, J., Perry, M. A., & Childs, S. (2006). Early childhood research quarterly. Early Childhood Research Quarterly, 21(2), 142–152.
9. Horwitz, E. K. (2017). On the misreading of Horwitz, Horwitz & Cope (1986) and the need to balance anxiety research and the experiences of anxious language learners. In C. Gkonou, M. Daubney, & J.-M. Dewaele (Eds.), *New insights into language anxiety: Theory, research and educational implications (pp. 31-47). Multilingual Matters.
10. Kobakhidze, M. N., & Šťastný, V. (2023). Theoretical perspectives on the role of parents in shadow education. Studia Paedagogica, 28(2), 89-110. https://doi.org/10.5817/SP2023-2-4
11. Kotler, P. (2002). Marketing management (11th ed.). Prentice Hall.
12. Lee, M. K. O., Cheung, C. M. K., & Chen, C. Z. (2005). Acceptance of internet-based learning medium: The role of extrinsic and intrinsic motivation. Information & Management, 42(8), 1095-1104.
13. Leeming, P., & Harris, J. (2022). Measuring speaking proficiency growth in the language classroom: An investigation of practical approaches for teachers. Language Teaching Research. https://doi.org/10.1177/13621688221130856
14. Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: An argument for AI in education. Pearson.
15. MacIntyre, P. D., & Gardner, R. C. (1994). The subtle effects of language anxiety on cognitive processing in the second language. Language Learning, 44(2), 283–305.
16. Ministry of Education. (2022). Education in Taiwan. pp. 11, 43.
17. Müller, W. (1991). Gaining competitive advantage through customer satisfaction. European Management Journal, 9(2), 201–211. https://doi.org/10.1016/0263-2373(91)90085-5
18. Ng, D. T. K., Leung, J. K. L., Su, J., Ng, R. C. W., & Chu, S. K. W. (2023). Teachers' AI digital competencies and twenty-first-century skills in the post-pandemic world. Education Tech Research Dev, 71, 137-161. https://doi.org/10.1007/s11423-023-10203-6
19. Oluwafemi Ayotunde, O., Jamil, D. I., & Cavus, N. (2023). The impact of artificial intelligence in foreign language learning using learning management systems: A systematic literature review. Information Technologies and Learning Tools, 95(3). https://doi.org/10.33407/itlt.v95i3.5233
20. Renz, A., & Hilbig, R. (2020). Prerequisites for artificial intelligence in further education: Identification of drivers, barriers, and business models of educational technology companies. International Journal of Educational Technology in Higher Education. https://doi.org/10.1186/s41239-020-00193-3
21. Suante, P. K., & Bray, M. (2013). Researching forms of shadow education: Methodological challenges and complexities of private supplementary tutoring in Myanmar. ECNU Review of Education, 7(1), 89–110. https://doi.org/10.1177/20965311231167194
22. Tai, T.-Y., & Chen, H. H.-J. (2022). The impact of intelligent personal assistants on adolescent EFL learners’ speaking proficiency. Computer Assisted Language Learning. https://doi.org/10.1080/09588221.2022.2070219
23. Tsai, M.-T., Tsai, C.-L., & Chang, H.-C. (2010). The effect of customer value, customer satisfaction, and switching costs on customer loyalty: An empirical study of hypermarkets in Taiwan. Social Behavior and Personality, 38(6), 729-740. https://doi.org/10.2224/sbp.2010.38.6.729
24. Tsang, A. (2022). The relationships between EFL learners’ anxiety in oral presentations, self-perceived pronunciation, and speaking proficiency. Language Teaching Research. https://doi.org/10.1177/13621688221102522
25. Tseng, S.-Y. (2019). A study on the relationship between marketing strategy mix and customer satisfaction of English cram schools: Take the Daya District of Taichung City as an example—unpublished master's thesis. National Chi Nan University.
26. Yen, Y.-C., Hou, H.-T., & Chang, K. E. (2015). Applying a role-playing strategy to enhance learners' writing and speaking skills in EFL courses using Facebook and Skype as learning tools: A case study in Taiwan. Computer Assisted Language Learning, 28(5), 383-406. https://doi.org/10.1080/09588221.2013.839568
校內:2029-07-04公開