| 研究生: |
吳國才 Wu, Kuo-Tsai |
|---|---|
| 論文名稱: |
利用有限元素分析研究CMOS影像感測器之製程 Study of CMOS Image Sensors Manufacturing Process by Finite Element Analysis |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye 李輝煌 Lee, Huei-Huang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 有限元素分析 、晶圓接合 、薄膜應力 、漏電流 、多重內連線結構 |
| 外文關鍵詞: | Finite Element Analysis, Wafer Bonding, Leakage Current, Multi-Level Interconnects |
| 相關次數: | 點閱:142 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CMOS影像感測器的市場勢必將持續擴大。為了因應市場需求,製造技術必須持續的進步,製程上許多的問題也因應而生。本研究利用有限元素分析評估CMOS影像感測器製程中出現的問題,將研究項目分為晶圓接合製程、薄膜結構堆疊製程與內連線結構製程等三項研究。 在晶圓接合製程研究中,將晶圓接合製程的晶圓對位問題,透過不同的晶圓接合座與製程參數來進行實驗觀察影響接合準確率的因素。實驗結果顯示晶圓偏移的形式可能由中心或外圍偏移,較小的頂柱下壓力量與較大的分離間隙對特殊形式的晶圓承接座有較顯著的影響。在薄膜結構堆疊製程研究中,利用有限元素分析模擬CMOS薄膜堆疊過程,探討漏電流和薄膜堆疊結構之間的關係,校正材料參數以提高模擬結果的準確性。模擬和實驗結果都證實了測量的漏電流和應力之間的正相關性,利用此關係我們可以改變薄膜堆疊的結構,以減少漏電流,從而提高感測器的壽命和可靠性。在內連線結構製程研究中,利用有限元素模擬分析內連線結構的裂紋和界面脫層。評估局部區域的模型,以數值模擬判斷發生脫層破壞之可能性。結果顯示不同材料和導線間的熱機械性能不匹配是產生高應力的重要因素,還發現選擇具有較高楊氏模量和較低熱膨脹係數的low-k材料可以避免引起高應力,最後以最小化應力值為目標,更改內連線結構的幾何參數,最佳化層內連線的結構。
Complementary metal-oxide semiconductor (CMOS) image sensors (CISs) are extensively used in devices such as notebook computers, digital cameras, mobile phones as well as in various other applications. As the manufacturing demand increases in the automotive industry, the market for CISs is bound to expand as well. To meet the market demand, the manufacturing technology must continue to progress, and many problems may arise during this progression. In this study, a finite element analysis (FEA) was used to evaluate the problems that arise in the CIS manufacturing process. The research items were divided into three subtopics: the wafer-bonding process, film-stack-architecture process, and multilevel-interconnect-structure process.
In the wafer bonding process, the experimental results show that the form of the wafer distortion may be caused by a shifted center or periphery. Additionally, in bond chuck type A, a smaller pin force and larger separation gap have a significant influence on the bonding accuracy. In the film-stack-architecture process, we simulate the CIS film stacking process using FEA. The simulated and experimental results confirm a positive correlation between the measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of CIS
components. In the multilevel-interconnect-structure process study, we use the finite element method to analyze the cracking and interfacial delamination of the interconnect structures. The results show that selecting low-k materials with high Young's modulus and low coefficients of thermal expansion could prevent the generation of high stress. Finally, to minimize stress in the device, the geometric parameters of the connection structure are optimized.
[1] J. Haisma, G. A. C. M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of material acience and technology, physics and chemistry historical review in a broader scope and comparative outlook,” Mater. SCI Eng., R 37, pp.1-60, April 2002.
[2] L. Rayleight, “ A study of glass surfaces in optical contact,” Proc. Phys. Soc., 156, p.326, 1936.
[3] G. Wallis, D. I. Pomerantz, “ Field Assisted Glass‐Metal Sealing, ” J. Appl. Phys., 40, p.3946, 1969.
[4] J. B. Lasky, S.R. Stiffler, F. R. White, J. R. Abernathey, “Silicon-on-Insulator (SOI) by Bonding and Etch-Back,” IEDM Tech. Dig., p.648, 1985.
[5] J. B. Lasky, “ Reversible Silicon Wafer Bonding for Surface Protection : Water-Enhanced Debonding, ” Appl. Phys. Lett., 48, p.78, 1986.
[6] M. Shimbo, K. Furukawa, K. Furuda, K. Tanzawa, “ silicon-to-silicon direct bonding method,” J. Appl. Phys., 60, p.2987, 1986.
[7] Q. –Y. Tong, X. -L. Xu, and H. Shen, “ Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding,” Electron. Lett., 26, p.697, 1990.
[8] Q.Y. Tong, U. Goesele, “ Semiconductor wafer bonding: science and technology, ” John Wiley & Sons, New York, 1999.
[9] K. –Y. Ahn, R. Stengl, T. Y. Tan, U. Gösele, “ Stability of interfacial oxide layers during silicon wafer bonding,” J. Appl. Phys., 65, p.561, 1989.
[10] H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “ Low-temperature direct bonding of Silicon and silicon dioxide by surface activation method,” Sensors and Actuators, A70, p.164, 1998.
[11] K.T. Wu, “ Wafer Bonding Process Simulation and Experiment,” Master's thesis, National Cheng Kung University, Tainan, 2010.
[12] T.H. Hsu, “ The Study of Advanced Technologies and Novel Structures for High Performance Deep Submicron CMOS Image Sensors,” PhD thesis, National Cheng Kung University, Tainan, 2005.
[13] R.C. Cammarata, “Surface and interface stress effects in thin films,” Prog. Surf. Sci., 46, pp.1–38, 1994.
[14] Spaepen, “ F. Interfaces and stresses in thin films,” Acta. Mater., 48, pp.31-42, 2000.
[15] W.D. Nix, B.M. Clement, “ A mechanism for intrinsic tensile stresses in the thin films,” J. Mater. Res., 14, pp.3467–3473,1999.
[16] W.D. Nix, M.F. Doerner, “ Stresses and deformation processes in thin films on substrates,” Crit. Rev. Solid. State., 14, pp.225–268, 1998.
[17] W.D. Nix, “ Mechanical properties of thin films,” Metall. Mater. Trans A., 20, pp.2217–2245, 1999.
[18] T.J. Wang, C.H. Ko, S.J. Chang, S.L. Wu, T.M. Kuan, W.C. Lee, “ The Effects of Mechanical Uniaxial Stress on Junction Leakage in Nanoscale CMOSFETs,” IEEE. T. Electron. Dev., 55, pp.572–577, 2008.
[19] H.A. Rueda, “ Modeling of mechanical stress in silicon isolation technology and it’s influence on device characteristics,” PhD thesis, University of Florida, Florida, 1999.
[20] G.Q. Lo, D.L. Kwong, S. Lee, “ Reliability characteristics of metal-oxide-semiconductor capacitors with chemical vapor deposited Ta2O5 gate dielectrics,” Appl. Phys. Lett., 62, pp.973–975, 1993.
[21] T. Tsuchiya, Y. Sato, M. Tomizawa, “ Three mechanisms determining short-channel effects in fully-depleted SOI MOSFETs,” IEEE. T. Electron. Dev., 45, pp.1116–1121, 1998.
[22] C.M. Lai, Y.K. Fang, W.K. Yeh, C.T. Lin, T.H. Chou, “ The Investigation of post-annealing-Induced Defects Behavior on 90-nm In-Halo nMOSFETs With Low-Frequency Noise and Charge-Pumping Measuring,” IEEE. Electr. Device L., 28, pp.142–144, 2007.
[23] C.A. Wang, “ The Investigation of Characteristic and Reliability for 90nm SOI CMOSFETs with Strain Technology,” Master's thesis, National University of Kaohsiung, Kaohsiung, 2007.
[24] J.Y. Chen, C.A. Wang, W.K. Yeh, “ The impact of strain technology on device performance and reliability for sub-90nm FUSI SOI
MOSFETs,” IEEE Conference on Electron Devices and Solid-State Circuits, Tainan, Taiwan, 20-22 Dec. 2007
[25] W.T. Chang, C.C. Wang, J.A. Lin, W.K. Yeh, “ External Stresses on Tensile and Compressive Contact Etching Stop Layer SOI MOSFETs,” IEEE. T. Electron. Dev., 57, p.8, 2010.
[26] T. Watanabe, J.H. Park, S. Aoyama, K. Isobe, S. Kawahito, “ Effects of Negative-Bias Operation and Optical Stress on Dark Current in CMOS Image Sensors,” IEEE Trans. Electron Devices, 57, pp.1512-1518, 2010.
[27] Shcherback, A. Belenky, O. Yadid-Pecht, “ Empirical dark current modeling for complementary metal oxide semiconductor active pixel sensor,” Opt Eng., 41, pp.1216-1219, 2002.
[28] D.H. Kim, S. Park, D. Jung, E. Park, S.W. Mhin, C.W. Lee, “ Analysis of structural effect on mechanical stress at backside deep trench isolation using finite element method,” Microelectron Eng., 154, pp.42-47, 2016.
[29] H.H. Lee, “ Finite Element Simulations with ANSYS Workbench 16, ” Schroff Development Corporation, Mission, KS, pp. 350–361, 2015.
[30] W.C. Chuang, D.T.W. Lin, Y.C. Hu, H.L. Lee, C.H. Cheng, P.Z. Chang, N.B. Quyen, ” A Method Integrating Optimal Algorithmand FEM on CMOS Residual Stress,” J. Mech., 30, pp.123–128, 2014.
[31] ANSYS Release15.0, Chapter 13: Element Birth and death, ANSYS Engineering Data Help for Workbench, ANSYS Inc., 2013.
[32] G.G. Stoney, “ The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London,” Proc. R. Soc. London, Ser. A., 82, pp.172−175, 1909.
[33] C. Gallon, G. Reimbold, G. Ghibaudo, R.A ianchi, R. Gwoziecki, “ Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) silicon,” Solid. State. Electron., 48, pp.561–566, 2004.
[34] J.W. Dong, “ Investigation of Strain-Temperature Stress on Rapid Thermal Ultra-thin Gate Oxides,” Master's thesis, National Taiwan University, Taipei, 2005.
[35] T.J. Wang, H.W. Chen, P.C. Yeh, C.H. Ko, S.J. Chang, J. Yeh, S.L. Wu, C.Y. Lee, W.C. Lee, D.D. Tang, “ Effects of mechanical uniaxial stress on SiGe HBT characteristics. J. Electrochem,” Soc., 154, pp.105–108, 2007.
[36] W.I. Lee, “ Physics II,” National Chiao Tung University OpenCourseWare. Available online: http://ocw.nctu.edu.tw/course_detail.php?bgid=1&gid=3&nid=383#.WCqUlS195pg (2006).
[37] W.M. Tsai, “Simulation of Film Structure for CMOS Image Sensor,” Master's thesis, National Cheng Kung University, Tainan, 2011.
[38] K.T Wu, S.J. Hwang, and H.H. Lee, ” Finite Element Analysis of Film Stack Architecture for Complementary Metal-Oxide–Semiconductor Image Sensors,” Sensors, 17(5), p.1004, 2017.
[39] T. Ye, Z. Suo, A.G. Evans, “ Thin film cracking and the roles of substrate and interface,” Int J Solids Struct., 29, pp.2639-2648, 1992.
[40] J. L. Beuth, N.W. Klingbeil, “ Cracking of thin films bonded to elastic-plastic substrates,” J Mech Phys Solids., 44, pp.1411-1428, 1996.
[41] T.Y. Tsui, A.J. M, J.J. Vlassak, “ Constraint effects on thin film channel cracking behavior,” J Mater Res., 20, pp.2266-2273, 2005.
[42] P.A. Flinn, A.S. Mack, P.R. Bresser, T.N. Marieb, “ Stress-induced void formation in metal lines,” MRS Bulletin., 18, pp.26-35, 1993.
[43] Y.L. Shen, “ Modeling of Thermal Stresses in Metal Interconnects Effects of Line Aspect Ratio,” Jpn J Appl Phys., 82, pp.1578-1581, 1997.
[44] T. Ogawa Ennis, K.D. Lee, V.A. Blaschke, P.S. Ho, “ Electromigration Reliability Issues in Dual-damascene Cu Interconnections,” IEEE Trans Rel., 51, pp.403-419, 2002.
[45] J.M. Paik, H. Park, Y.C Joo, “ Effect of Low-k Dielectric on Stress and Stress-induced Damage in Dual-Damascene Cu Interconnects,” Microelectron Eng., 71, pp.348-357, 2004.
[46] K,C, Chang, Y. Li, C.Y. Lin, M.J. Lii, “ Design guidance for the mechanical reliability of low-k flip chip BGA package,” in International Microelectronics and Packaging Society Conference, 2004.
[47] C.C. Chiu, C.C. Lee, T.L. Chou, C.C. Hsia, K.N. Chiang, “ Analysis of Cu/low-k structure under back end of line process,” Microelectron Eng., 85, pp.2150-2154, 2008.
[48] C.C. Lee, T.L. Chou, C.C Chiu, C.C Hsia, K.N. Chiang, “ Cracking energy estimation of ultra low-k package using novel prediction approach combined with global–local modeling technique,” Microelectron Eng., 85, pp.2709-2084, 2008.
[49] E.F. Rybicki, M.F. Kanninen, “ A finite element calculation of stress intensity factors by a modified crack closure integral,” Eng Fract Mech., 9, pp.931-938, 1977.
[50] X. Chen, Y.C. Lina, X. Liu, G.Q. Lub, “ Fracture mechanics analysis of the effect of substrate flexibility on solder joint reliability,” Eng Fract Mech., 72, pp.2628-2646, 2005.
[51] Leski “ Implementation of the virtual crack closure technique in engineering FE calculations,” Finite Elem Anal Des., 43, pp.261-268, 2007.
[52] R.M. Marat-Mendesa, M.M. Freitas, “ Failure criteria for mixed mode delamination in glass fibre epoxy composites,” Composite Structures., 92, pp.2292-2298, 2010.
[53] S.K. Ryu, K.H. Lu, X.F. Zhang, J.H. Im, P.S. Ho, R. Huang, “ Impact of Near-Surface Thermal Stresses on Interfacial Reliability of Through-Silicon Vias for 3-D Interconnects,” IEEE Trans Device Mat Rel., 11, pp.35-43, 2011.
[54] M.C. Hsieh, S.T. Wu, C.J. Wu, J.H. Lau, “ Energy Release Rate Estimation for Through Silicon Vias in 3-D IC Integration,” IEEE Trans Comp Pack Man., 4, pp.57-65, 2014.
[55] Q. Ma, K. Wu, Z.Y. Wang, “ Thermal Stresses of TSVs With Silicon Post Conductors and Polymer Insulators, ” IEEE Trans Comp Pack Man., 6, pp.1847-1854, 2016.
[56] R. Krueger, “ Virtual crack closure technique: History, approach, and applications. Appl. Mech. Rev.,57, pp.109-143, 2004.
[57] Ray lannurzelli, “ Pattern Shifting Analyses of Micro-structures of IC Package. Characterization and Metrology for VLSI Technology,” pp.431-436, 2004.
[58] M. Kohno, “ Low dielectric constant materials. Journal of Photopolymer Science and Technology,” 12, pp.189-192, 1999.
[59] K. Lu, X. Zhang, S. Ryu, J. Im, R. Huang, P.S. Ho, “ Thermo-mechanical reliability of 3-D ICs containing through-silicon-vias,” in Electronic Components and Technology Conference, pp.630-634, 2009.
[60] ANSYS Theory Reference for ANSYS and ANSYS Workbench, Release 12.0, ANSYS Inc., 2009.
[61] H.H. Lee, “ Engineering analysis with ANSYS : fundamentals and concepts,” Gau-Lih ,Taipei, Taiwan, pp. 350–361, 2005.
[62] B.Y. Lin, “Stress Analysis of Multi-Level Interconnection under Cyclic Thermomechanical Loads,” Master's thesis, National Cheng Kung University, Tainan, 2012.
[63] K.T. Wu, S.J. Hwang, H.H. Lee, and B.Y. Lin, ” Finite Element Analysis of Multi‑Level Interconnection under Cyclic Thermomechanical Loads,” Microsystem Technologies, 2017.
校內:2022-08-22公開