| 研究生: |
陳囿良 Chen, You-Liang |
|---|---|
| 論文名稱: |
金屬有機骨架於光學感測之應用 The application of metal−organic frameworks for optical sensors |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 金屬有機骨架 、後修飾 、光學感測與分析 、過氧化氫感測 、亞硝酸根離子感測 、銅離子感測 |
| 外文關鍵詞: | MOF, optical sensor, post-synthetic modification, photoluminescence |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架(Metal−organic frameworks, MOFs)是由金屬節點以及有機連結器所組成的一系列具備高比表面積、結構可調性以及化學可修飾性的奈米孔洞材料。這些特性使得 MOF 相對於傳統材料可暴露出極高密度的活性位點,進而提升應用價值。然而,絕大多數 MOF 不具備水穩定性的缺點限制其在水溶液環境中的應用。使用以鋯為基底的MOF(ZrMOFs)作為材料可以解決這個問題,鋯金屬節點與有機連結器間鍵結極強的特性能夠幫助 MOF 結構在水溶液環境中穩定。因此,將 Zr-MOF 作為基材並修飾上可用於光學感測的物質以探討材料光學性質的變化為本碩論探討的主題。
本碩論分為三個部分,第一部份的研究是為了改善三維 MOF 在水溶液中的分散問題,因此選用分散性較好的二維 MOF,ZrBTB,並進一步將具備發光性質的鑭系金屬,鋱,安裝於 ZrBTB 的金屬節點上。ZrBTB以及鋱之間的能量轉移大幅增強了鋱的發光訊號以及在水溶液中感測亞硝酸根離子的效果。在第二部分的研究中,為了解決碳量子點尺寸過大,難與 MOF 結合成複材的問題,因此選用不會有孔洞大小限制的二維 MOF,ZrBTB 作為平台以固定化碳量子點,並進一步將三種不同尺寸的碳量子點裝載於 ZrBTB 的結構上且成功的應用於水溶液中銅離子的螢光感測。在第三部分的研究中,藉由兩步法的合成方式成功將硫化鈷奈米粒子選擇性地限制於一種 Zr-MOF,MOF-808,的孔洞中,以避免大尺寸的硫化鈷奈米粒子生成於 MOF 晶體之間。之後將此材料應用於催化水溶液中過氧化氫與 3, 3', 5, 5'-tetramethylbenzidine 之間的氧化還原反應,所導致的水溶液吸收度變化可以用於定量溶液中過氧化氫的濃度。
In this thesis, the design of metal−organic frameworks (MOFs) and their applications in optical sensors would be investigated, and the content of this thesis will be divided into three parts.
In the first part, spatially isolated terbium ions are post-synthetically installed on a twodimensional (2D) zirconium-based metal–organic framework (Zr-MOF), ZrBTB (BTB = 1,3,5-tri(4-carboxyphenyl)benzene), and the loading of installed terbium is adjusted by tuning the synthetic temperature in the synthesis. Based on the photoluminescence tests, the energy transfer from the BTB to the installed terbium is highly tunable by adjusting the temperature for installing terbium, and the composites are successfully applied for nitrite quantification. In the second part, ZrBTB is utilized to post-synthetically immobilize graphene quantum dots (GQDs) with three different sizes. Unlike the pristine GQDs that can only show the luminescence in aqueous solution, the GQDs immobilized on ZrBTB reveal the photoluminescence in both suspension and dry powder. Chemical and photoluminescent stabilities of the ZrBTB-immobilized GQDs in water are investigated, and the use of immobilized GQDs in detecting copper ions is demonstrated. In the third part, nanoparticles of cobalt sulphide solely confined within the nanopores of a Zr-MOF, MOF-808, are synthesized by a two-step approach, with the first step being installing cobalt ions within MOF-808 and the second step being sulphurisation. As a demonstration, the nanocomposite is used as a catalyst for the redox reaction between 3,3',5,5'-tetramethylbenzidine and H2O2 in aqueous solutions, which can be utilized in the colorimetric quantification of H2O2.
1. B. Valeur and M. N. Berberan-Santos, Molecular fluorescence: principles and applications, John Wiley & Sons, 2012
2. A. J. Gomes, C. N. Lunardi, F. S. Rocha and G. S. Patience, Experimental methods in chemical engineering: fluorescence emission spectroscopy. Can. J. Chem. Eng., 97, 2168-2175, 2019
3. Y. Wang, Y.-M. Zhang and S. X.-A. Zhang, Stimuli-induced reversible proton transfer for stimuli-responsive materials and devices. Acc. Chem. Res., 54, 2216-2226, 2021
4. E. Sisamakis, A. Valeri, S. Kalinin, P. J. Rothwell and C. A. Seidel, Accurate single-molecule FRET studies using multiparameter fluorescence detection, Elsevier, 2010
5. X. Chen, D. Peng, Q. Ju and F. Wang, Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev., 44, 1318-1330, 2015
6. J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, 2006
7. H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev., 110, 2620-2640, 2010
8. J. P. Desvergne and A. W. Czarnik, Chemosensors of ion and molecule recognition, Springer Science & Business Media, 2012
9. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev., 46, 3242-3285, 2017
10. M. H. Gehlen, The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C: Photochem., 42, 100338, 2020
11. A. S. Tanwar, R. Parui, R. Garai, M. A. Chanu and P. K. Iyer, Dual “Static and Dynamic” fluorescence quenching mechanisms based detection of TNT via a cationic conjugated polymer. ACS Meas. Sci. Au, 2, 23-30, 2021
12. T. Zhang and W. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 43, 5982-5993, 2014
13. M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. Houk, Luminescent metal-organic frameworks. Chem. Soc. Rev., 38, 1330-1352, 2009
14. D. J. Ashworth and J. A. Foster, Metal–organic framework nanosheets (MONs): a new dimension in materials chemistry. J. Mater. Chem. A, 6, 16292-16307, 2018
15. J. Heine and K. Muller-Buschbaum, Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev., 42, 9232-9242, 2013
16. N. Ohta and A. Robertson, Colorimetry: fundamentals and applications, John Wiley & Sons, 2006
17. N. Kaur and S. Kumar, Colorimetric metal ion sensors. Tetrahedron, 67, 9233-9264, 2011
18. V. Kumar, K. D. Gill, V. Kumar and K. D. Gill, Springer, 2018.
19. D. Calloway, Beer-lambert law. J. Chem. Educ., 74, 744, 1997
20. S. Li, Y. Zhang, Q. Wang, A. Lin and H. Wei, Nanozyme-enabled analytical chemistry. Anal. Chem., 94, 312-323, 2021
21. X. Zhang, Q. Yang, Y. Lang, X. Jiang and P. Wu, Rationale of 3, 3', 5, 5'-tetramethylbenzidine as the chromogenic substrate in colorimetric analysis. Anal. Chem., 92, 12400-12406, 2020
22. Y. Liu, F. Wang, Y. Liu, L. Cao, H. Hu, X. Yao, J. Zheng and H. Liu, A label-free plasmonic nanosensor driven by horseradish peroxidase-assisted tetramethylbenzidine redox catalysis for colorimetric sensing H2O2 and cholesterol. Sens. Actuators B Chem., 389, 133893, 2023
23. S. M. Conyers and D. A. Kidwell, Chromogenic substrates for horseradish peroxidase. Anal. Biochem., 192, 207-211, 1991
24. Y.-S. Wei, M. Zhang, R. Zou and Q. Xu, Metal–organic framework-based catalysts with single metal sites. Chem. Rev., 120, 12089-12174, 2020
25. J. M. Thomas, Z. Saghi and P. L. Gai, Can a single atom serve as the active site in some heterogeneous catalysts? Top. Catal., 54, 588-594, 2011
26. X. Feng, Y. Song and W. Lin, Dimensional Reduction of Lewis Acidic Metal-Organic Frameworks for Multicomponent Reactions. J. Am. Chem. Soc., 143, 8184-8192, 2021
27. S. Kitagawa, R. Kitaura and S. Noro, Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 43, 2334-2375, 2004
28. H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, The Chemistry and Applications of Metal–Organic Frameworks. Science, 341, 1230444, 2013
29. G. Ferey, Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37, 191-214, 2008
30. I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha and J. T. Hupp, Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2. ACS Catal., 5, 6302-6309, 2015
31. M. B. Majewski, A. W. Peters, M. R. Wasielewski, J. T. Hupp and O. K. Farha, Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Lett., 3, 598-611, 2018
32. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev., 112, 1105-1125, 2012
33. S. Pal, S.-S. Yu and C.-W. Kung, Group 4 Metal-Based Metal–Organic Frameworks for Chemical Sensors. Chemosensors, 9, 306, 2021
34. A. Cadiau, K. Adil, P. Bhatt, Y. Belmabkhout and M. Eddaoudi, A metal-organic framework–based splitter for separating propylene from propane. Science, 353, 137-140, 2016
35. J. Yu, R. Anderson, X. Li, W. Xu, S. Goswami, S. S. Rajasree, K. Maindan, D. A. Gómez-Gualdrón and P. Deria, Improving energy transfer within metal–organic frameworks by aligning linker transition dipoles along the framework axis. J. Am. Chem. Soc., 142, 11192-11202, 2020
36. J. Yu, X. Li and P. Deria, Light-Harvesting in Porous Crystalline Compositions: Where We Stand toward Robust Metal–Organic Frameworks. ACS Sustain. Chem. Eng., 7, 1841-1854, 2018
37. G. A. Leith, C. R. Martin, J. M. Mayers, P. Kittikhunnatham, R. W. Larsen and N. B. Shustova, Confinement-guided photophysics in MOFs, COFs, and cages. Chem. Soc. Rev., 50, 4382-4410, 2021
38. E. A. Dolgopolova, A. A. Berseneva, M. S. Faillace, O. A. Ejegbavwo, G. A. Leith, S. W. Choi, H. N. Gregory, A. M. Rice, M. D. Smith and M. Chruszcz, Confinement-Driven Photophysics in Cages, Covalent− Organic Frameworks, Metal–Organic Frameworks, and DNA. J. Am. Chem. Soc., 142, 4769-4783, 2020
39. M. Gutiérrez, Y. Zhang and J.-C. Tan, Confinement of luminescent guests in metal–organic frameworks: understanding pathways from synthesis and multimodal characterization to potential applications of LG@ MOF systems. Chem. Rev., 122, 10438-10483, 2022
40. N. C. Burtch, H. Jasuja and K. S. Walton, Water stability and adsorption in metal–organic frameworks. Chem. Rev., 114, 10575-10612, 2014
41. D. Yang and B. C. Gates, Characterization, Structure, and Reactivity of Hydroxyl groups on Metal‐Oxide Cluster Nodes of Metal‐Organic Frameworks: Structural Diversity and Keys to Reactivity and Catalysis. Adv. Mater., 2305611, 2023
42. Q. Wang and D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev., 120, 1438-1511, 2019
43. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev., 38, 1450-1459, 2009
44. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc., 130, 13850-13851, 2008
45. K. O. Kirlikovali, S. L. Hanna, F. A. Son and O. K. Farha, Back to the Basics: Developing Advanced Metal–Organic Frameworks Using Fundamental Chemistry Concepts. ACS Nanosci. Au, 3, 37-45, 2022
46. R. S. Forgan, Modulated self-assembly of metal–organic frameworks. Chem. Sci., 11, 4546-4562, 2020
47. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater., 1, 15018, 2016
48. C. Jia, T. He and G.-M. Wang, Zirconium-based metal-organic frameworks for fluorescent sensing. Coord. Chem. Rev., 476, 214930, 2023
49. J. Rocha, L. D. Carlos, F. A. Paz and D. Ananias, Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev., 40, 926-940, 2011
50. P. Mahata, S. K. Mondal, D. K. Singha and P. Majee, Luminescent rare-earth-based MOFs as optical sensors. Dalton Trans., 46, 301-328, 2017
51. S. K. Gupta, R. Kadam and P. Pujari, Lanthanide spectroscopy in probing structure-property correlation in multi-site photoluminescent phosphors. Coord. Chem. Rev., 420, 213405, 2020
52. Z. Liu, W. He and Z. Guo, Metal coordination in photoluminescent sensing. Chem. Soc. Rev., 42, 1568-1600, 2013
53. J. C. Bunzli and C. Piguet, Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev., 34, 1048-1077, 2005
54. S. V. Eliseeva and J. C. Bunzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev., 39, 189-227, 2010
55. K. Binnemans, Lanthanide-based luminescent hybrid materials. Chem. Rev., 109, 4283-4374, 2009
56. Y. Cui, B. Chen and G. Qian, Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev., 273, 76-86, 2014
57. X. Wang, L. Yue, P. Zhou, L. Fan and Y. He, Lanthanide-Organic Frameworks Featuring Three-Dimensional Inorganic Connectivity for Multipurpose Hydrocarbon Separation. Inorg. Chem., 60, 17249-17257, 2021
58. Q. Yao, A. Bermejo Gómez, J. Su, V. Pascanu, Y. Yun, H. Zheng, H. Chen, L. Liu, H. N. Abdelhamid, B. Martín-Matute and X. Zou, Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chem. Mater., 27, 5332-5339, 2015
59. M. Tian, J. Zheng, J. Xue, X. Pan, D. Zhou, Q. Yao, Y. Li, W. Duan, J. Su and X. Huang, A series of microporous and robust Ln-MOFs showing luminescence properties and catalytic performances towards Knoevenagel reactions. Dalton Trans., 50, 17785-17791, 2021
60. T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha and J. T. Hupp, Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Acc. Chem. Res., 50, 805-813, 2017
61. S. M. Cohen, The Postsynthetic Renaissance in Porous Solids. J. Am. Chem. Soc., 139, 2855-2863, 2017
62. J. Zhang, S. B. Peh, J. Wang, Y. Du, S. Xi, J. Dong, A. Karmakar, Y. Ying, Y. Wang and D. Zhao, Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe(3+) in aqueous solution. Chem. Commun., 55, 4727-4730, 2019
63. K. Yi, H. Li, X. Zhang and L. Zhang, Designed Tb(III)-Functionalized MOF-808 as Visible Fluorescent Probes for Monitoring Bilirubin and Identifying Fingerprints. Inorg. Chem., 60, 3172-3180, 2021
64. H. S. Jena, A. M. Kaczmarek, C. Krishnaraj, X. Feng, K. Vijayvergia, H. Yildirim, S.-N. Zhao, R. Van Deun and P. V. Der Voort, White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu3+ and Tb3+. Cryst. Growth Des., 19, 6339-6350, 2019
65. H. Yuan, G. Liu, Z. Qiao, N. Li, P. J. S. Buenconsejo, S. Xi, A. Karmakar, M. Li, H. Cai, S. J. Pennycook and D. Zhao, Solution-Processable Metal-Organic Framework Nanosheets with Variable Functionalities. Adv. Mater., 33, 2101257, 2021
66. Y. Wang, L. Feng, J. Pang, J. Li, N. Huang, G. S. Day, L. Cheng, H. F. Drake, Y. Wang, C. Lollar, J. Qin, Z. Gu, T. Lu, S. Yuan and H. C. Zhou, Photosensitizer-Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production. Adv. Sci., 6, 1802059, 2019
67. Z. Li, D. Zhan, A. Saeed, N. Zhao, J. Wang, W. Xu and J. Liu, Fluoride sensing performance of fluorescent NH2-MIL-53(Al): 2D nanosheets vs. 3D bulk. Dalton Trans., 50, 8540-8548, 2021
68. J. Ma, A. G. Wong-Foy and A. J. Matzger, The Role of Modulators in Controlling Layer Spacings in a Tritopic Linker Based Zirconium 2D Microporous Coordination Polymer. Inorg. Chem., 54, 4591-4593, 2015
69. L. Feng, Y. Qiu, Q.-H. Guo, Z. Chen, J. S. Seale, K. He, H. Wu, Y. Feng, O. K. Farha and R. D. Astumian, Active mechanisorption driven by pumping cassettes. Science, 374, 1215-1221, 2021
70. Z. Wang, Y. Liu, Z. Wang, L. Cao, Y. Zhao, C. Wang and W. Lin, Through-space Forster-type energy transfer in isostructural zirconium and hafnium-based metal-organic layers. Chem. Commun., 53, 9356-9359, 2017
71. D. Reddy, J. Lancaster Jr and D. P. Cornforth, Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science, 221, 769-770, 1983
72. H. Min, Z. Han, M. Wang, Y. Li, T. Zhou, W. Shi and P. Cheng, A water-stable terbium metal–organic framework as a highly sensitive fluorescent sensor for nitrite. Inorg. Chem. Front., 7, 3379-3385, 2020
73. Y.-L. Chen, C.-H. Shen, C.-W. Huang and C.-W. Kung, Terbium-modified two-dimensional zirconium-based metal–organic frameworks for photoluminescence detection of nitrite. Mol. Syst. Des. Eng., 8, 330-340, 2023
74. Z. Lu, J. Liu, X. Zhang, Y. Liao, R. Wang, K. Zhang, J. Lyu, O. K. Farha and J. T. Hupp, Node-accessible zirconium MOFs. J. Am. Chem. Soc., 142, 21110-21121, 2020
75. C.-H. Shen, Y.-H. Chen, Y.-C. Wang, T.-E. Chang, Y.-L. Chen and C.-W. Kung, Probing the electronic and ionic transports in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Phys. Chem. Chem. Phys., 24, 9855-9865, 2022
76. M. Padmanaban, P. Müller, C. Lieder, K. Gedrich, R. Grünker, V. Bon, I. Senkovska, S. Baumgärtner, S. Opelt and S. Paasch, Application of a chiral metal–organic framework in enantioselective separation. Chem. Commun., 47, 12089-12091, 2011
77. J. Zhao, R. Chen, J. Huang, F. Wang, C. A. Tao and J. Wang, Facile Synthesis of Metal-Organic Layers with High Catalytic Performance toward Detoxification of a Chemical Warfare Agent Simulant. ACS Appl. Mater. Interfaces, 13, 40863-40871, 2021
78. Y. Li and R. T. Yang, Gas adsorption and storage in metal− organic framework MOF-177. Langmuir, 23, 12937-12944, 2007
79. P. Chen, Y. Liu, X. Hu, X. Liu, E.-M. You, X. Qian, J. Chen, L. Xiao, L. Cao, X. Peng, Z. Zeng, Y. Jiang, S.-Y. Ding, H. Liao, Z. Wang, D. Zhou and C. Wang, Probing surface structure on two-dimensional metal-organic layers to understand suppressed interlayer packing. Nano Research, 13, 3151-3156, 2020
80. Y. Wang, L. Li, L. Yan, X. Gu, P. Dai, D. Liu, J. G. Bell, G. Zhao, X. Zhao and K. M. Thomas, Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile Continuous Microdroplet Flow Reaction. Chem. Mater., 30, 3048-3059, 2018
81. K. Chen, H. Gao, D. Wang, X. Li, D. Wang and W. U. Khan, The preparation of a three dimensional terbium doped reduced graphene oxide aerogel with photoluminescence and paramagnetic properties. RSC Adv., 8, 9287-9292, 2018
82. E. J. Little Jr and M. M. Jones, A complete table of electronegativities. J. Chem. Educ., 37, 231, 1960
83. M. Kim, J. F. Cahill, H. Fei, K. A. Prather and S. M. Cohen, Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc., 134, 18082-18088, 2012
84. M. Lammert, C. Glißmann and N. Stock, Tuning the stability of bimetallic Ce (IV)/Zr (IV)-based MOFs with UiO-66 and MOF-808 structures. Dalton Trans., 46, 2425-2429, 2017
85. S.-L. Zhong, R. Xu, L.-F. Zhang, W.-G. Qu, G.-Q. Gao, X.-L. Wu and A.-W. Xu, Terbium-based infinite coordination polymer hollow microspheres: preparation and white-light emission. J. Mater. Chem. A, 21, 16574-16580, 2011
86. S. A. Younis, N. Bhardwaj, S. K. Bhardwaj, K.-H. Kim and A. Deep, Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coord. Chem. Rev., 429, 213620, 2021
87. D. F. Sava Gallis, D. J. Vogel, G. A. Vincent, J. M. Rimsza and T. M. Nenoff, NO x Adsorption and Optical Detection in Rare Earth Metal–Organic Frameworks. ACS Appl. Mater. Interfaces, 11, 43270-43277, 2019
88. X. Hao, Y. Liang, H. Zhen, X. Sun, X. Liu, M. Li, A. Shen and Y. Yang, Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2. J. Solid State Chem., 287, 121323, 2020
89. Y. Li, Y. Zhao, W. Zhang, K. Shao and H. Zhou, A Fluorescent Probe of Nitrite Based on Eu3+ Functionalized Metal‐Organic Frameworks. Z. Anorg. Allg. Chem., 647, 1091-1095, 2021
90. J. Jing, L. Wen-Jing, L. Lin, J. Yuan, G. Yi-Fang and S. Shao-Min, Orange luminescent carbon dots as fluorescent probe for detection of nitrite. Chinese J. Anal. Chem., 47, 560-566, 2019
91. S. Zhu, L. Zhao and B. Yan, A novel spectroscopic probe for detecting food preservative NO2−: Citric acid functionalized metal-organic framework and luminescence sensing. Microchem. J., 155, 104768, 2020
92. H. Wu and C. Tong, Dual-emission fluorescent probe for the simultaneous detection of nitrite and mercury (II) in environmental water samples based on the Tb3+-modified carbon quantum dot/3-aminophenylboronic acid hybrid. Anal. Chem., 92, 8859-8866, 2020
93. J.-X. Wu and B. Yan, Luminescent Hybrid Tb3+ Functionalized metal–organic frameworks act as food preservative sensor and water scavenger for NO2–. Ind. Eng. Chem. Res., 57, 7105-7111, 2018
94. Z. Qi, Q. You and Y. Chen, Nucleotide/Tb3+ coordination polymer nanoparticles as luminescent sensor and scavenger for nitrite ion. Anal. Chim. Acta, 902, 168-173, 2016
95. W.-Y. Chen, C.-C. Huang, L.-Y. Chen and H.-T. Chang, Self-assembly of hybridized ligands on gold nanodots: tunable photoluminescence and sensing of nitrite. Nanoscale, 6, 11078-11083, 2014
96. Y.-C. Wang, Y.-C. Chen, W.-S. Chuang, J.-H. Li, Y.-S. Wang, C.-H. Chuang, C.-Y. Chen and C.-W. Kung, Pore-confined silver nanoparticles in a porphyrinic metal–organic framework for electrochemical nitrite detection. ACS Appl. Nano Mater., 3, 9440-9448, 2020
97. A. K. Geim, Graphene: Status and Prospects. Science, 324, 1530-1534, 2009
98. A. C. Berends and C. D. Donega, Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit. J. Phys. Chem. Lett., 8, 4077-4090, 2017
99. Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu and P. Chen, Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater., 31, 2019
100. X. T. Zheng, A. Ananthanarayanan, K. Q. Luo and P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. small, 11, 1620-1636, 2015
101. F. Liu, M. H. Jang, H. D. Ha, J. H. Kim, Y. H. Cho and T. S. Seo, Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv. Mater., 25, 3657-3662, 2013
102. Z. F. Wang, H. D. Zeng and L. Y. Sun, Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. J. Mater. Chem. C, 3, 1157-1165, 2015
103. J. S. Yang, Y. C. Chang, Q. H. Huang, Y. Y. Lai and W. H. Chiang, Microplasma-enabled nanocarbon assembly for the diameter-selective synthesis of colloidal graphene quantum dots. Chem. Commun., 56, 10365-10368, 2020
104. X. Li, M. Rui, J. Song, Z. Shen and H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater., 25, 4929-4947, 2015
105. S. P. Moghanlo and H. Valizadeh, Microwave-assisted preparation of graphene quantum dots immobilized nanosilica as an efficient heterogeneous nanocatalyst for the synthesis of xanthenes. Org. Commun., 12, 14-25, 2019
106. X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, S. Kaskel and Y. Zhu, Graphene quantum dots‐capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 13, 1602225, 2017
107. W. Liu, X. Yan, J. Chen, Y. Feng and Q. Xue, Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale, 5, 6053-6062, 2013
108. B. P. Biswal, D. B. Shinde, V. K. Pillai and R. Banerjee, Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale, 5, 10556-10561, 2013
109. J. Aguilera-Sigalat and D. Bradshaw, Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites. Coord. Chem. Rev., 307, 267-291, 2016
110. H. Weng and B. Yan, N-GQDs and Eu3+ co-encapsulated anionic MOFs: two-dimensional luminescent platform for decoding benzene homologues. Dalton Trans., 45, 8795-8801, 2016
111. S. M. Cohen, Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev., 112, 970-1000, 2012
112. Y. C. Chen, W. H. Chiang, D. Kurniawan, P. C. Yeh, K. I. Otake and C. W. Kung, Impregnation of Graphene Quantum Dots into a Metal-Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019
113. S. Upadhyaya, B. Gogoi and N. Sen Sarma, Poly(n-vinylpyrrolidone-co-acrylonitrile-co-methacr ylic acid)-graphene quantum dot conjugate: synthesis and characterization for sensing ammonia vapour. J. Mater. Chem. C, 9, 2165-2177, 2021
114. Z. Kowser, U. Rayhan, T. Akther, C. Redshaw and T. Yamato, A brief review on novel pyrene based fluorometric and colorimetric chemosensors for the detection of Cu2+. Mater. Chem. Front., 5, 2173-2200, 2021
115. D. Kurniawan, M. R. Rahardja, P. V. Fedotov, E. D. Obraztsova, K. K. Ostrikov and W.-H. Chiang, Plasma-bioresource-derived multifunctional porous NGQD/AuNP nanocomposites for water monitoring and purification. Chem. Eng. J., 451, 139083, 2023
116. D. Kurniawan and W.-H. Chiang, Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors. Carbon, 167, 675-684, 2020
117. S. Zhang, J. Y. Zhu, Y. Qing, L. X. Wang, J. Zhao, J. Li, W. H. Tian, D. Z. Jia and Z. J. Fan, Ultramicroporous Carbons Puzzled by Graphene Quantum Dots: Integrated High Gravimetric, Volumetric, and Areal Capacitances for Supercapacitors. Adv. Funct. Mater., 28, 2018
118. S. Q. Wei, X. H. Yin, H. Y. Li, X. Y. Du, L. M. Zhang, Q. Yang and R. Yang, Multi-Color Fluorescent Carbon Dots: Graphitized sp2 Conjugated Domains and Surface State Energy Level Co-Modulate Band Gap Rather Than Size Effects. Chem. Eur. J., 26, 8129-8136, 2020
119. D. Kurniawan, N. Sharma, M. R. Rahardja, Y. Y. Cheng, Y. T. Chen, G. X. Wu, Y. Y. Yeh, P. C. Yeh, K. K. Ostrikov and W. H. Chiang, Plasma Nanoengineering of Bioresource-Derived Graphene Quantum Dots as Ultrasensitive Environmental Nanoprobes. ACS Appl. Mater. Interfaces, 14, 52289-52300, 2022
120. M. D. Tsai, Y. L. Chen, J. W. Chang, S. C. Yang and C. W. Kung, Sulfonate-Functionalized Two-Dimensional Metal-Organic Framework as a "Dispersant" for Polyaniline to Boost Its Electrochemical Capacitive Performance. ACS Appl. Energy Mater., 6, 11268-11277, 2023
121. H. J. Li, K. Gao, B. Y. Mo, Q. Meng, K. Li, J. Wu and H. W. Hou, Construction of porous 2D MOF nanosheets for rapid and selective adsorption of cationic dyes. Dalton Trans., 50, 3348-3355, 2021
122. J. Liu, Z. Li, X. Zhang, K.-i. Otake, L. Zhang, A. W. Peters, M. J. Young, N. M. Bedford, S. P. Letourneau and D. J. Mandia, Introducing nonstructural ligands to zirconia-like metal–organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation. ACS Catal., 9, 3198-3207, 2019
123. Y. D. Song, W. H. Ho, Y. C. Chen, J. H. Li, Y. S. Wang, Y. J. Gu, C. H. Chuang and C. W. Kung, Selective Formation of Polyaniline Confined in the Nanopores of a Metal-Organic Framework for Supercapacitors. Chem. Eur. J., 27, 3560-3567, 2021
124. W. Q. Tang, Y. J. Zhao, M. Xu, J. Y. Xu, S. S. Meng, Y. D. Yin, Q. H. Zhang, L. Gu, D. H. Liu and Z. Y. Gu, Controlling the Stacking Modes of Metal-Organic Framework Nanosheets through Host-Guest Noncovalent Interactions. Angew. Chem. Int. Ed., 60, 6920-6925, 2021
125. S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong and S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS nano, 7, 1239-1245, 2013
126. S. Y. Moon, Y. Y. Liu, J. T. Hupp and O. K. Farha, Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework. Angew. Chem. Int. Ed., 54, 6795-6799, 2015
127. H. Noh, C.-W. Kung, K.-i. Otake, A. W. Peters, Z. Li, Y. Liao, X. Gong, O. K. Farha and J. T. Hupp, Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework. ACS Catal., 8, 9848-9858, 2018
128. P. Jin, L. Wang, X. Ma, R. Lian, J. Huang, H. She, M. Zhang and Q. Wang, Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl. Catal. B, 284, 119762, 2021
129. Y. Su, Z. Zhang, H. Liu and Y. Wang, Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl. Catal. B, 200, 448-457, 2017
130. Z. Li, A. W. Peters, V. Bernales, M. A. Ortuno, N. M. Schweitzer, M. R. DeStefano, L. C. Gallington, A. E. Platero-Prats, K. W. Chapman, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, Metal−Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Cent. Sci., 3, 31-38, 2017
131. Z. Li, A. W. Peters, A. E. Platero-Prats, J. Liu, C. W. Kung, H. Noh, M. R. DeStefano, N. M. Schweitzer, K. W. Chapman, J. T. Hupp and O. K. Farha, Fine-Tuning the Activity of Metal−Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. J. Am. Chem. Soc., 139, 15251-15258, 2017
132. J. Wang, Y. Wang and D. Zhang, Exploring the bactericidal performance and application of novel mimic enzyme Co4S3. J. Colloid Interface Sci., 561, 327-337, 2020
133. S. Hashmi, M. Singh, P. Weerathunge, E. L. H. Mayes, P. D. Mariathomas, S. N. Prasad, R. Ramanathan and V. Bansal, Cobalt Sulfide Nanosheets as Peroxidase Mimics for Colorimetric Detection of l-Cysteine. ACS Appl. Nano Mater., 4, 13352-13362, 2021
134. Y. Yuan, J. Xu, Z. Y. Zhao, H. Li, K. Wang, Z. Wang and L. P. Wang, Design and Characterization of a Novel Artificial Peroxidase. Catalysts, 9, 2019
135. W. H. Ho, S. C. Li, Y. C. Wang, T. E. Chang, Y. T. Chiang, Y. P. Li and C. W. Kung, Proton-Conductive Cerium-Based Metal–Organic Frameworks. ACS Appl. Mater. Interfaces, 13, 55358-55366, 2021
136. B. Jiang, D. Duan, L. Gao, M. Zhou, K. Fan, Y. Tang, J. Xi, Y. Bi, Z. Tong, G. F. Gao, N. Xie, A. Tang, G. Nie, M. Liang and X. Yan, Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc., 13, 1506-1520, 2018
137. M. Zandieh and J. Liu, Nanozyme Catalytic Turnover and Self-Limited Reactions. ACS Nano, 15, 15645-15655, 2021
138. Z. Nickolov, G. Georgiev, D. Stoilova and I. Ivanov, Raman and IR study of cobalt acetate dihydrate. J. Mol. Struct., 354, 119-125, 1995
139. T. Abza, D. G. Dadi, F. G. Hone, T. C. Meharu, G. Tekle, E. B. Abebe and K. S. Ahmed, Characterization of Cobalt Sulfide Thin Films Synthesized from Acidic Chemical Baths. Adv. Mater. Sci. Eng. , 2020, 2628706, 2020
140. H. Furukawa, F. Gandara, Y. B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson and O. M. Yaghi, Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. J. Am. Chem. Soc., 136, 4369-4381, 2014
141. P. Tan, Y. Liu, A. Zhu, W. Zeng, H. Cui and J. Pan, Rational Design of Z-Scheme System Based on 3D Hierarchical CdS Supported 0D Co9S8 Nanoparticles for Superior Photocatalytic H2 Generation. ACS Sustainable Chem. Eng., 6, 10385-10394, 2018
142. D. Xiong, Q. Zhang, S. M. Thalluri, J. Xu, W. Li, X. Fu and L. Liu, One-Step Fabrication of Monolithic Electrodes Comprising Co9 S8 Particles Supported on Cobalt Foam for Efficient and Durable Oxygen Evolution Reaction. Chem. Eur. J., 23, 8749-8755, 2017
143. S.-H. Chang, M.-D. Lu, Y.-L. Tung and H.-Y. Tuan, Gram-Scale Synthesis of Catalytic Co9S8 Nanocrystal Ink as a Cathode Material for Spray-Deposited, LargeArea Dye-Sensitized Solar Cells. ACS Nano, 7, 9443-9451, 2013
144. W. Song, B. Zhao, C. Wang, Y. Ozaki and X. Lu, Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J. Mater. Chem. B, 7, 850-875, 2019
145. H. Wei and E. Wang, Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem., 80, 2250-2254, 2008
146. B. Yan, Lanthanide-Functionalized Metal-Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing. Acc. Chem. Res., 50, 2789-2798, 2017
校內:2026-01-13公開