簡易檢索 / 詳目顯示

研究生: 陳囿良
Chen, You-Liang
論文名稱: 金屬有機骨架於光學感測之應用
The application of metal−organic frameworks for optical sensors
指導教授: 龔仲偉
Kung, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 195
中文關鍵詞: 金屬有機骨架後修飾光學感測與分析過氧化氫感測亞硝酸根離子感測銅離子感測
外文關鍵詞: MOF, optical sensor, post-synthetic modification, photoluminescence
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機骨架(Metal−organic frameworks, MOFs)是由金屬節點以及有機連結器所組成的一系列具備高比表面積、結構可調性以及化學可修飾性的奈米孔洞材料。這些特性使得 MOF 相對於傳統材料可暴露出極高密度的活性位點,進而提升應用價值。然而,絕大多數 MOF 不具備水穩定性的缺點限制其在水溶液環境中的應用。使用以鋯為基底的MOF(ZrMOFs)作為材料可以解決這個問題,鋯金屬節點與有機連結器間鍵結極強的特性能夠幫助 MOF 結構在水溶液環境中穩定。因此,將 Zr-MOF 作為基材並修飾上可用於光學感測的物質以探討材料光學性質的變化為本碩論探討的主題。

    本碩論分為三個部分,第一部份的研究是為了改善三維 MOF 在水溶液中的分散問題,因此選用分散性較好的二維 MOF,ZrBTB,並進一步將具備發光性質的鑭系金屬,鋱,安裝於 ZrBTB 的金屬節點上。ZrBTB以及鋱之間的能量轉移大幅增強了鋱的發光訊號以及在水溶液中感測亞硝酸根離子的效果。在第二部分的研究中,為了解決碳量子點尺寸過大,難與 MOF 結合成複材的問題,因此選用不會有孔洞大小限制的二維 MOF,ZrBTB 作為平台以固定化碳量子點,並進一步將三種不同尺寸的碳量子點裝載於 ZrBTB 的結構上且成功的應用於水溶液中銅離子的螢光感測。在第三部分的研究中,藉由兩步法的合成方式成功將硫化鈷奈米粒子選擇性地限制於一種 Zr-MOF,MOF-808,的孔洞中,以避免大尺寸的硫化鈷奈米粒子生成於 MOF 晶體之間。之後將此材料應用於催化水溶液中過氧化氫與 3, 3', 5, 5'-tetramethylbenzidine 之間的氧化還原反應,所導致的水溶液吸收度變化可以用於定量溶液中過氧化氫的濃度。

    In this thesis, the design of metal−organic frameworks (MOFs) and their applications in optical sensors would be investigated, and the content of this thesis will be divided into three parts.

    In the first part, spatially isolated terbium ions are post-synthetically installed on a twodimensional (2D) zirconium-based metal–organic framework (Zr-MOF), ZrBTB (BTB = 1,3,5-tri(4-carboxyphenyl)benzene), and the loading of installed terbium is adjusted by tuning the synthetic temperature in the synthesis. Based on the photoluminescence tests, the energy transfer from the BTB to the installed terbium is highly tunable by adjusting the temperature for installing terbium, and the composites are successfully applied for nitrite quantification. In the second part, ZrBTB is utilized to post-synthetically immobilize graphene quantum dots (GQDs) with three different sizes. Unlike the pristine GQDs that can only show the luminescence in aqueous solution, the GQDs immobilized on ZrBTB reveal the photoluminescence in both suspension and dry powder. Chemical and photoluminescent stabilities of the ZrBTB-immobilized GQDs in water are investigated, and the use of immobilized GQDs in detecting copper ions is demonstrated. In the third part, nanoparticles of cobalt sulphide solely confined within the nanopores of a Zr-MOF, MOF-808, are synthesized by a two-step approach, with the first step being installing cobalt ions within MOF-808 and the second step being sulphurisation. As a demonstration, the nanocomposite is used as a catalyst for the redox reaction between 3,3',5,5'-tetramethylbenzidine and H2O2 in aqueous solutions, which can be utilized in the colorimetric quantification of H2O2.

    中文摘要 I Extend Abstract III 誌謝 XIII 目錄 XV 表目錄 XXIII 圖目錄 XXIV 第一章 緒論 1 1-1光學感測介紹 1 1-1-1光致發光原理與相關現象 1 1-1-2光致發光感測 7 1-1-3比色法原理及感測 12 1-2 金屬有機骨架 15 1-2-1金屬有機骨架簡介 15 1-2-2發光金屬有機骨架 16 1-2-3具催化活性的金屬有機骨架 18 1-2-4 水穩定金屬有機骨架 19 第二章 後修飾鋱離子之二維金屬有機骨架於光感測亞硝酸根離子之應用 21 2-1主題背景介紹 21 2-1-1鑭系金屬有機骨架 21 2-1-2後修飾鋯基金屬有機骨架 23 2-1-3二維鋯基金屬有機骨架 25 2-1-4光感測亞硝酸根離子 27 2-1-5研究動機 29 2-2藥品與儀器 30 2-2-1實驗藥品 30 2-2-2實驗儀器 33 2-3實驗流程 34 2-3-1合成二維金屬有機骨架ZrBTB 34 2-3-2合成Tb-ZrBTB 35 2-3-3光致發光實驗 36 2-3-4亞硝酸根離子感測 36 2-3-5選擇性測試 37 2-3-6核磁共振實驗樣品製備 37 2-3-7感應耦合電漿光學發射光譜樣品製備 37 2-4材料鑑定結果分析 38 2-4-1核磁共振(Nuclear magnetic resonance, NMR)光譜分析 38 2-4-2粉末X射線繞射圖譜(Powder X-ray diffraction patterns, XRD patterns) 40 2-4-3能量色散X射線光譜(Energy-dispersive X-ray spectroscopy, EDS 42 2-4-4穿透式電子顯微鏡圖(Transmission electron microscopic images, TEM images) 43 2-4-5感應耦合電漿光學發射光譜(Inductively coupled plasma-optical emission spectrometry, ICP-OES)分析 46 2-4-6傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR) 47 2-4-7氮氣吸脫附曲線及孔徑分布圖(Nitrogen adsorption- desorption isotherms and density Functional Theory (DFT) pore size distribution) 48 2-4-8 X射線光電子光譜(X-ray photoelectron spectroscopy, XPS) 51 2-4-9 鋱金屬離子與鋯金屬離子間取代反應的計算 52 2-5材料發光性質測量以及亞硝酸鹽感測 54 2-5-1光致發光測試 54 2-5-2穩定度測試 57 2-5-3亞硝酸根離子感測 59 2-5-4 干擾物測試 64 2-6 小結 65 第三章 後修飾石墨烯量子點於二維金屬有機骨架 67 3-1主題背景介紹 67 3-1-1石墨烯量子點介紹 67 3-1-2 金屬有機骨架作為GQDs的固態載體 69 3-1-3 後修飾法裝載GQDs於Zr-MOF的孔洞中 70 3-1-4 後修飾GQDs於2D Zr-MOF奈米片上 71 3-1-5 研究動機 72 3-2藥品與儀器 74 3-2-1實驗藥品 74 3-2-2實驗儀器 76 3-3 實驗流程 77 3-3-1 GQD-1、GQD-2、GQD-3的合成 77 3-3-2 ZrBTB、GQD-1-ZrBTB、GQD-2-ZrBTB以及GQD-3-ZrBTB的合成 79 3-3-3光致發光實驗 80 3-3-4 銅離子感測以及選擇性測試 80 3-3-5感應耦合電漿光學發射光譜樣品製備 81 3-4 GQDs的材料鑑定結果 82 3-4-1拉曼光譜(Raman spectra) 82 3-4-2 X射線光電子光譜(X-ray photoelectron spectroscopy, XPS) 83 3-4-3 穿透式電子顯微鏡圖(Transmission electron microscopic images, TEM images) 84 3-4-4 GQDs的發光照片 86 3-5 GQD-MOF複材的材料鑑定結果 87 3-5-1粉末X射線繞射圖譜(Powder X-ray diffraction patterns, XRD patterns) 87 3-5-2 氮氣吸脫附曲線及孔徑分布圖(Nitrogen adsorption- desorption isotherms and density Functional Theory (DFT) pore size distribution) 88 3-5-3 X射線光電子光譜(X-ray photoelectron spectroscopy, XPS) 90 3-5-4 傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR) 91 3-5-5 感應耦合電漿光學發射光譜(Inductively Coupled Plasma-Optical Emission Spectrometry, ICP-OES)分析 92 3-5-6穿透式電子顯微鏡圖(Transmission electron microscopic images, TEM images) 93 3-6 GQDs溶液與複材的發光光譜 98 3-6-1 GQDs溶液及ZrBTB的激發光譜 98 3-6-2 GQDs溶液以及複材的發光光譜探討及銅離子(Cu2+)感測 99 3-7 小結 104 第四章 限制硫化鈷奈米粒子於鋯基金屬有機骨架作為催化劑應用於比色法感測過氧化氫 106 4-1主題背景介紹 106 4-1-1 Zr-MOF應用於催化反應的相關策略 106 4-1-2金屬硫化物結合鋯基金屬有機骨架之複材 107 4-1-3催化H2O2-TMB的氧化還原反應 108 4-1-4研究動機 109 4-2藥品與儀器 110 4-2-1實驗藥品 110 4-2-2實驗儀器 112 4-3 實驗流程 113 4-3-1 MOF-808、Co-MOF-808以及CoS-MOF-808的合成 113 4-3-2 H2O2-TMB系統催化實驗 114 4-3-3 Turnover number(TON)實驗 114 4-3-4 H2O2感測 115 4-3-5 感應耦合電漿光學發射光譜樣品製備 115 4-4 材料鑑定結果與分析 116 4-4-1粉末X射線繞射圖譜(Powder X ray diffraction patterns, XRD patterns) 116 4-4-2掃描式電子顯微鏡圖(Scanning Electron Microscopic images, SEM images) 117 4-4-3能量色散X射線光譜(Energy-dispersive X-ray spectroscopy, EDS) 118 4-4-4感應耦合電漿光學發射/質譜光譜(Inductively Coupled Plasma-Optical / Mass Spectrometry, ICP-OES/MS)分析 119 4-4-5傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR) 120 4-4-6氮氣吸脫附曲線與孔徑分布圖(Nitrogen adsorption and desorption isotherm and density Functional Theory(DFT)pore size distribution) 121 4-4-7 X射線光電子光譜(X-ray photoelectron spectroscopy, XPS) 123 4-4-8穿透式電子顯微鏡圖(Transmission Electron Microscopic images, TEM images) 124 4-5 CoS-MOF-808應用於TMB/H2O2催化反應以及H2O2感測 128 4-5-1 CoS-MOF-808催化TMB/H2O2反應的定性結果 128 4-5-2 CoS-MOF-808的TON計算 131 4-5-3 CoS-MOF-808的H2O2感測 133 4-6 小結 134 第五章 未來展望及建議 136 參考文獻 138 附錄:個人簡歷表 158

    1. B. Valeur and M. N. Berberan-Santos, Molecular fluorescence: principles and applications, John Wiley & Sons, 2012
    2. A. J. Gomes, C. N. Lunardi, F. S. Rocha and G. S. Patience, Experimental methods in chemical engineering: fluorescence emission spectroscopy. Can. J. Chem. Eng., 97, 2168-2175, 2019
    3. Y. Wang, Y.-M. Zhang and S. X.-A. Zhang, Stimuli-induced reversible proton transfer for stimuli-responsive materials and devices. Acc. Chem. Res., 54, 2216-2226, 2021
    4. E. Sisamakis, A. Valeri, S. Kalinin, P. J. Rothwell and C. A. Seidel, Accurate single-molecule FRET studies using multiparameter fluorescence detection, Elsevier, 2010
    5. X. Chen, D. Peng, Q. Ju and F. Wang, Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev., 44, 1318-1330, 2015
    6. J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, 2006
    7. H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev., 110, 2620-2640, 2010
    8. J. P. Desvergne and A. W. Czarnik, Chemosensors of ion and molecule recognition, Springer Science & Business Media, 2012
    9. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev., 46, 3242-3285, 2017
    10. M. H. Gehlen, The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C: Photochem., 42, 100338, 2020
    11. A. S. Tanwar, R. Parui, R. Garai, M. A. Chanu and P. K. Iyer, Dual “Static and Dynamic” fluorescence quenching mechanisms based detection of TNT via a cationic conjugated polymer. ACS Meas. Sci. Au, 2, 23-30, 2021
    12. T. Zhang and W. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 43, 5982-5993, 2014
    13. M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. Houk, Luminescent metal-organic frameworks. Chem. Soc. Rev., 38, 1330-1352, 2009
    14. D. J. Ashworth and J. A. Foster, Metal–organic framework nanosheets (MONs): a new dimension in materials chemistry. J. Mater. Chem. A, 6, 16292-16307, 2018
    15. J. Heine and K. Muller-Buschbaum, Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev., 42, 9232-9242, 2013
    16. N. Ohta and A. Robertson, Colorimetry: fundamentals and applications, John Wiley & Sons, 2006
    17. N. Kaur and S. Kumar, Colorimetric metal ion sensors. Tetrahedron, 67, 9233-9264, 2011
    18. V. Kumar, K. D. Gill, V. Kumar and K. D. Gill, Springer, 2018.
    19. D. Calloway, Beer-lambert law. J. Chem. Educ., 74, 744, 1997
    20. S. Li, Y. Zhang, Q. Wang, A. Lin and H. Wei, Nanozyme-enabled analytical chemistry. Anal. Chem., 94, 312-323, 2021
    21. X. Zhang, Q. Yang, Y. Lang, X. Jiang and P. Wu, Rationale of 3, 3', 5, 5'-tetramethylbenzidine as the chromogenic substrate in colorimetric analysis. Anal. Chem., 92, 12400-12406, 2020
    22. Y. Liu, F. Wang, Y. Liu, L. Cao, H. Hu, X. Yao, J. Zheng and H. Liu, A label-free plasmonic nanosensor driven by horseradish peroxidase-assisted tetramethylbenzidine redox catalysis for colorimetric sensing H2O2 and cholesterol. Sens. Actuators B Chem., 389, 133893, 2023
    23. S. M. Conyers and D. A. Kidwell, Chromogenic substrates for horseradish peroxidase. Anal. Biochem., 192, 207-211, 1991
    24. Y.-S. Wei, M. Zhang, R. Zou and Q. Xu, Metal–organic framework-based catalysts with single metal sites. Chem. Rev., 120, 12089-12174, 2020
    25. J. M. Thomas, Z. Saghi and P. L. Gai, Can a single atom serve as the active site in some heterogeneous catalysts? Top. Catal., 54, 588-594, 2011
    26. X. Feng, Y. Song and W. Lin, Dimensional Reduction of Lewis Acidic Metal-Organic Frameworks for Multicomponent Reactions. J. Am. Chem. Soc., 143, 8184-8192, 2021
    27. S. Kitagawa, R. Kitaura and S. Noro, Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 43, 2334-2375, 2004
    28. H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, The Chemistry and Applications of Metal–Organic Frameworks. Science, 341, 1230444, 2013
    29. G. Ferey, Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37, 191-214, 2008
    30. I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha and J. T. Hupp, Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2. ACS Catal., 5, 6302-6309, 2015
    31. M. B. Majewski, A. W. Peters, M. R. Wasielewski, J. T. Hupp and O. K. Farha, Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Lett., 3, 598-611, 2018
    32. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev., 112, 1105-1125, 2012
    33. S. Pal, S.-S. Yu and C.-W. Kung, Group 4 Metal-Based Metal–Organic Frameworks for Chemical Sensors. Chemosensors, 9, 306, 2021
    34. A. Cadiau, K. Adil, P. Bhatt, Y. Belmabkhout and M. Eddaoudi, A metal-organic framework–based splitter for separating propylene from propane. Science, 353, 137-140, 2016
    35. J. Yu, R. Anderson, X. Li, W. Xu, S. Goswami, S. S. Rajasree, K. Maindan, D. A. Gómez-Gualdrón and P. Deria, Improving energy transfer within metal–organic frameworks by aligning linker transition dipoles along the framework axis. J. Am. Chem. Soc., 142, 11192-11202, 2020
    36. J. Yu, X. Li and P. Deria, Light-Harvesting in Porous Crystalline Compositions: Where We Stand toward Robust Metal–Organic Frameworks. ACS Sustain. Chem. Eng., 7, 1841-1854, 2018
    37. G. A. Leith, C. R. Martin, J. M. Mayers, P. Kittikhunnatham, R. W. Larsen and N. B. Shustova, Confinement-guided photophysics in MOFs, COFs, and cages. Chem. Soc. Rev., 50, 4382-4410, 2021
    38. E. A. Dolgopolova, A. A. Berseneva, M. S. Faillace, O. A. Ejegbavwo, G. A. Leith, S. W. Choi, H. N. Gregory, A. M. Rice, M. D. Smith and M. Chruszcz, Confinement-Driven Photophysics in Cages, Covalent− Organic Frameworks, Metal–Organic Frameworks, and DNA. J. Am. Chem. Soc., 142, 4769-4783, 2020
    39. M. Gutiérrez, Y. Zhang and J.-C. Tan, Confinement of luminescent guests in metal–organic frameworks: understanding pathways from synthesis and multimodal characterization to potential applications of LG@ MOF systems. Chem. Rev., 122, 10438-10483, 2022
    40. N. C. Burtch, H. Jasuja and K. S. Walton, Water stability and adsorption in metal–organic frameworks. Chem. Rev., 114, 10575-10612, 2014
    41. D. Yang and B. C. Gates, Characterization, Structure, and Reactivity of Hydroxyl groups on Metal‐Oxide Cluster Nodes of Metal‐Organic Frameworks: Structural Diversity and Keys to Reactivity and Catalysis. Adv. Mater., 2305611, 2023
    42. Q. Wang and D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev., 120, 1438-1511, 2019
    43. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev., 38, 1450-1459, 2009
    44. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc., 130, 13850-13851, 2008
    45. K. O. Kirlikovali, S. L. Hanna, F. A. Son and O. K. Farha, Back to the Basics: Developing Advanced Metal–Organic Frameworks Using Fundamental Chemistry Concepts. ACS Nanosci. Au, 3, 37-45, 2022
    46. R. S. Forgan, Modulated self-assembly of metal–organic frameworks. Chem. Sci., 11, 4546-4562, 2020
    47. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater., 1, 15018, 2016
    48. C. Jia, T. He and G.-M. Wang, Zirconium-based metal-organic frameworks for fluorescent sensing. Coord. Chem. Rev., 476, 214930, 2023
    49. J. Rocha, L. D. Carlos, F. A. Paz and D. Ananias, Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev., 40, 926-940, 2011
    50. P. Mahata, S. K. Mondal, D. K. Singha and P. Majee, Luminescent rare-earth-based MOFs as optical sensors. Dalton Trans., 46, 301-328, 2017
    51. S. K. Gupta, R. Kadam and P. Pujari, Lanthanide spectroscopy in probing structure-property correlation in multi-site photoluminescent phosphors. Coord. Chem. Rev., 420, 213405, 2020
    52. Z. Liu, W. He and Z. Guo, Metal coordination in photoluminescent sensing. Chem. Soc. Rev., 42, 1568-1600, 2013
    53. J. C. Bunzli and C. Piguet, Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev., 34, 1048-1077, 2005
    54. S. V. Eliseeva and J. C. Bunzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev., 39, 189-227, 2010
    55. K. Binnemans, Lanthanide-based luminescent hybrid materials. Chem. Rev., 109, 4283-4374, 2009
    56. Y. Cui, B. Chen and G. Qian, Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev., 273, 76-86, 2014
    57. X. Wang, L. Yue, P. Zhou, L. Fan and Y. He, Lanthanide-Organic Frameworks Featuring Three-Dimensional Inorganic Connectivity for Multipurpose Hydrocarbon Separation. Inorg. Chem., 60, 17249-17257, 2021
    58. Q. Yao, A. Bermejo Gómez, J. Su, V. Pascanu, Y. Yun, H. Zheng, H. Chen, L. Liu, H. N. Abdelhamid, B. Martín-Matute and X. Zou, Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chem. Mater., 27, 5332-5339, 2015
    59. M. Tian, J. Zheng, J. Xue, X. Pan, D. Zhou, Q. Yao, Y. Li, W. Duan, J. Su and X. Huang, A series of microporous and robust Ln-MOFs showing luminescence properties and catalytic performances towards Knoevenagel reactions. Dalton Trans., 50, 17785-17791, 2021
    60. T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha and J. T. Hupp, Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Acc. Chem. Res., 50, 805-813, 2017
    61. S. M. Cohen, The Postsynthetic Renaissance in Porous Solids. J. Am. Chem. Soc., 139, 2855-2863, 2017
    62. J. Zhang, S. B. Peh, J. Wang, Y. Du, S. Xi, J. Dong, A. Karmakar, Y. Ying, Y. Wang and D. Zhao, Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe(3+) in aqueous solution. Chem. Commun., 55, 4727-4730, 2019
    63. K. Yi, H. Li, X. Zhang and L. Zhang, Designed Tb(III)-Functionalized MOF-808 as Visible Fluorescent Probes for Monitoring Bilirubin and Identifying Fingerprints. Inorg. Chem., 60, 3172-3180, 2021
    64. H. S. Jena, A. M. Kaczmarek, C. Krishnaraj, X. Feng, K. Vijayvergia, H. Yildirim, S.-N. Zhao, R. Van Deun and P. V. Der Voort, White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu3+ and Tb3+. Cryst. Growth Des., 19, 6339-6350, 2019
    65. H. Yuan, G. Liu, Z. Qiao, N. Li, P. J. S. Buenconsejo, S. Xi, A. Karmakar, M. Li, H. Cai, S. J. Pennycook and D. Zhao, Solution-Processable Metal-Organic Framework Nanosheets with Variable Functionalities. Adv. Mater., 33, 2101257, 2021
    66. Y. Wang, L. Feng, J. Pang, J. Li, N. Huang, G. S. Day, L. Cheng, H. F. Drake, Y. Wang, C. Lollar, J. Qin, Z. Gu, T. Lu, S. Yuan and H. C. Zhou, Photosensitizer-Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production. Adv. Sci., 6, 1802059, 2019
    67. Z. Li, D. Zhan, A. Saeed, N. Zhao, J. Wang, W. Xu and J. Liu, Fluoride sensing performance of fluorescent NH2-MIL-53(Al): 2D nanosheets vs. 3D bulk. Dalton Trans., 50, 8540-8548, 2021
    68. J. Ma, A. G. Wong-Foy and A. J. Matzger, The Role of Modulators in Controlling Layer Spacings in a Tritopic Linker Based Zirconium 2D Microporous Coordination Polymer. Inorg. Chem., 54, 4591-4593, 2015
    69. L. Feng, Y. Qiu, Q.-H. Guo, Z. Chen, J. S. Seale, K. He, H. Wu, Y. Feng, O. K. Farha and R. D. Astumian, Active mechanisorption driven by pumping cassettes. Science, 374, 1215-1221, 2021
    70. Z. Wang, Y. Liu, Z. Wang, L. Cao, Y. Zhao, C. Wang and W. Lin, Through-space Forster-type energy transfer in isostructural zirconium and hafnium-based metal-organic layers. Chem. Commun., 53, 9356-9359, 2017
    71. D. Reddy, J. Lancaster Jr and D. P. Cornforth, Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science, 221, 769-770, 1983
    72. H. Min, Z. Han, M. Wang, Y. Li, T. Zhou, W. Shi and P. Cheng, A water-stable terbium metal–organic framework as a highly sensitive fluorescent sensor for nitrite. Inorg. Chem. Front., 7, 3379-3385, 2020
    73. Y.-L. Chen, C.-H. Shen, C.-W. Huang and C.-W. Kung, Terbium-modified two-dimensional zirconium-based metal–organic frameworks for photoluminescence detection of nitrite. Mol. Syst. Des. Eng., 8, 330-340, 2023
    74. Z. Lu, J. Liu, X. Zhang, Y. Liao, R. Wang, K. Zhang, J. Lyu, O. K. Farha and J. T. Hupp, Node-accessible zirconium MOFs. J. Am. Chem. Soc., 142, 21110-21121, 2020
    75. C.-H. Shen, Y.-H. Chen, Y.-C. Wang, T.-E. Chang, Y.-L. Chen and C.-W. Kung, Probing the electronic and ionic transports in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Phys. Chem. Chem. Phys., 24, 9855-9865, 2022
    76. M. Padmanaban, P. Müller, C. Lieder, K. Gedrich, R. Grünker, V. Bon, I. Senkovska, S. Baumgärtner, S. Opelt and S. Paasch, Application of a chiral metal–organic framework in enantioselective separation. Chem. Commun., 47, 12089-12091, 2011
    77. J. Zhao, R. Chen, J. Huang, F. Wang, C. A. Tao and J. Wang, Facile Synthesis of Metal-Organic Layers with High Catalytic Performance toward Detoxification of a Chemical Warfare Agent Simulant. ACS Appl. Mater. Interfaces, 13, 40863-40871, 2021
    78. Y. Li and R. T. Yang, Gas adsorption and storage in metal− organic framework MOF-177. Langmuir, 23, 12937-12944, 2007
    79. P. Chen, Y. Liu, X. Hu, X. Liu, E.-M. You, X. Qian, J. Chen, L. Xiao, L. Cao, X. Peng, Z. Zeng, Y. Jiang, S.-Y. Ding, H. Liao, Z. Wang, D. Zhou and C. Wang, Probing surface structure on two-dimensional metal-organic layers to understand suppressed interlayer packing. Nano Research, 13, 3151-3156, 2020
    80. Y. Wang, L. Li, L. Yan, X. Gu, P. Dai, D. Liu, J. G. Bell, G. Zhao, X. Zhao and K. M. Thomas, Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile Continuous Microdroplet Flow Reaction. Chem. Mater., 30, 3048-3059, 2018
    81. K. Chen, H. Gao, D. Wang, X. Li, D. Wang and W. U. Khan, The preparation of a three dimensional terbium doped reduced graphene oxide aerogel with photoluminescence and paramagnetic properties. RSC Adv., 8, 9287-9292, 2018
    82. E. J. Little Jr and M. M. Jones, A complete table of electronegativities. J. Chem. Educ., 37, 231, 1960
    83. M. Kim, J. F. Cahill, H. Fei, K. A. Prather and S. M. Cohen, Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc., 134, 18082-18088, 2012
    84. M. Lammert, C. Glißmann and N. Stock, Tuning the stability of bimetallic Ce (IV)/Zr (IV)-based MOFs with UiO-66 and MOF-808 structures. Dalton Trans., 46, 2425-2429, 2017
    85. S.-L. Zhong, R. Xu, L.-F. Zhang, W.-G. Qu, G.-Q. Gao, X.-L. Wu and A.-W. Xu, Terbium-based infinite coordination polymer hollow microspheres: preparation and white-light emission. J. Mater. Chem. A, 21, 16574-16580, 2011
    86. S. A. Younis, N. Bhardwaj, S. K. Bhardwaj, K.-H. Kim and A. Deep, Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coord. Chem. Rev., 429, 213620, 2021
    87. D. F. Sava Gallis, D. J. Vogel, G. A. Vincent, J. M. Rimsza and T. M. Nenoff, NO x Adsorption and Optical Detection in Rare Earth Metal–Organic Frameworks. ACS Appl. Mater. Interfaces, 11, 43270-43277, 2019
    88. X. Hao, Y. Liang, H. Zhen, X. Sun, X. Liu, M. Li, A. Shen and Y. Yang, Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2. J. Solid State Chem., 287, 121323, 2020
    89. Y. Li, Y. Zhao, W. Zhang, K. Shao and H. Zhou, A Fluorescent Probe of Nitrite Based on Eu3+ Functionalized Metal‐Organic Frameworks. Z. Anorg. Allg. Chem., 647, 1091-1095, 2021
    90. J. Jing, L. Wen-Jing, L. Lin, J. Yuan, G. Yi-Fang and S. Shao-Min, Orange luminescent carbon dots as fluorescent probe for detection of nitrite. Chinese J. Anal. Chem., 47, 560-566, 2019
    91. S. Zhu, L. Zhao and B. Yan, A novel spectroscopic probe for detecting food preservative NO2−: Citric acid functionalized metal-organic framework and luminescence sensing. Microchem. J., 155, 104768, 2020
    92. H. Wu and C. Tong, Dual-emission fluorescent probe for the simultaneous detection of nitrite and mercury (II) in environmental water samples based on the Tb3+-modified carbon quantum dot/3-aminophenylboronic acid hybrid. Anal. Chem., 92, 8859-8866, 2020
    93. J.-X. Wu and B. Yan, Luminescent Hybrid Tb3+ Functionalized metal–organic frameworks act as food preservative sensor and water scavenger for NO2–. Ind. Eng. Chem. Res., 57, 7105-7111, 2018
    94. Z. Qi, Q. You and Y. Chen, Nucleotide/Tb3+ coordination polymer nanoparticles as luminescent sensor and scavenger for nitrite ion. Anal. Chim. Acta, 902, 168-173, 2016
    95. W.-Y. Chen, C.-C. Huang, L.-Y. Chen and H.-T. Chang, Self-assembly of hybridized ligands on gold nanodots: tunable photoluminescence and sensing of nitrite. Nanoscale, 6, 11078-11083, 2014
    96. Y.-C. Wang, Y.-C. Chen, W.-S. Chuang, J.-H. Li, Y.-S. Wang, C.-H. Chuang, C.-Y. Chen and C.-W. Kung, Pore-confined silver nanoparticles in a porphyrinic metal–organic framework for electrochemical nitrite detection. ACS Appl. Nano Mater., 3, 9440-9448, 2020
    97. A. K. Geim, Graphene: Status and Prospects. Science, 324, 1530-1534, 2009
    98. A. C. Berends and C. D. Donega, Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit. J. Phys. Chem. Lett., 8, 4077-4090, 2017
    99. Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu and P. Chen, Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater., 31, 2019
    100. X. T. Zheng, A. Ananthanarayanan, K. Q. Luo and P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. small, 11, 1620-1636, 2015
    101. F. Liu, M. H. Jang, H. D. Ha, J. H. Kim, Y. H. Cho and T. S. Seo, Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv. Mater., 25, 3657-3662, 2013
    102. Z. F. Wang, H. D. Zeng and L. Y. Sun, Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. J. Mater. Chem. C, 3, 1157-1165, 2015
    103. J. S. Yang, Y. C. Chang, Q. H. Huang, Y. Y. Lai and W. H. Chiang, Microplasma-enabled nanocarbon assembly for the diameter-selective synthesis of colloidal graphene quantum dots. Chem. Commun., 56, 10365-10368, 2020
    104. X. Li, M. Rui, J. Song, Z. Shen and H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater., 25, 4929-4947, 2015
    105. S. P. Moghanlo and H. Valizadeh, Microwave-assisted preparation of graphene quantum dots immobilized nanosilica as an efficient heterogeneous nanocatalyst for the synthesis of xanthenes. Org. Commun., 12, 14-25, 2019
    106. X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, S. Kaskel and Y. Zhu, Graphene quantum dots‐capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 13, 1602225, 2017
    107. W. Liu, X. Yan, J. Chen, Y. Feng and Q. Xue, Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale, 5, 6053-6062, 2013
    108. B. P. Biswal, D. B. Shinde, V. K. Pillai and R. Banerjee, Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale, 5, 10556-10561, 2013
    109. J. Aguilera-Sigalat and D. Bradshaw, Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites. Coord. Chem. Rev., 307, 267-291, 2016
    110. H. Weng and B. Yan, N-GQDs and Eu3+ co-encapsulated anionic MOFs: two-dimensional luminescent platform for decoding benzene homologues. Dalton Trans., 45, 8795-8801, 2016
    111. S. M. Cohen, Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev., 112, 970-1000, 2012
    112. Y. C. Chen, W. H. Chiang, D. Kurniawan, P. C. Yeh, K. I. Otake and C. W. Kung, Impregnation of Graphene Quantum Dots into a Metal-Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019
    113. S. Upadhyaya, B. Gogoi and N. Sen Sarma, Poly(n-vinylpyrrolidone-co-acrylonitrile-co-methacr ylic acid)-graphene quantum dot conjugate: synthesis and characterization for sensing ammonia vapour. J. Mater. Chem. C, 9, 2165-2177, 2021
    114. Z. Kowser, U. Rayhan, T. Akther, C. Redshaw and T. Yamato, A brief review on novel pyrene based fluorometric and colorimetric chemosensors for the detection of Cu2+. Mater. Chem. Front., 5, 2173-2200, 2021
    115. D. Kurniawan, M. R. Rahardja, P. V. Fedotov, E. D. Obraztsova, K. K. Ostrikov and W.-H. Chiang, Plasma-bioresource-derived multifunctional porous NGQD/AuNP nanocomposites for water monitoring and purification. Chem. Eng. J., 451, 139083, 2023
    116. D. Kurniawan and W.-H. Chiang, Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors. Carbon, 167, 675-684, 2020
    117. S. Zhang, J. Y. Zhu, Y. Qing, L. X. Wang, J. Zhao, J. Li, W. H. Tian, D. Z. Jia and Z. J. Fan, Ultramicroporous Carbons Puzzled by Graphene Quantum Dots: Integrated High Gravimetric, Volumetric, and Areal Capacitances for Supercapacitors. Adv. Funct. Mater., 28, 2018
    118. S. Q. Wei, X. H. Yin, H. Y. Li, X. Y. Du, L. M. Zhang, Q. Yang and R. Yang, Multi-Color Fluorescent Carbon Dots: Graphitized sp2 Conjugated Domains and Surface State Energy Level Co-Modulate Band Gap Rather Than Size Effects. Chem. Eur. J., 26, 8129-8136, 2020
    119. D. Kurniawan, N. Sharma, M. R. Rahardja, Y. Y. Cheng, Y. T. Chen, G. X. Wu, Y. Y. Yeh, P. C. Yeh, K. K. Ostrikov and W. H. Chiang, Plasma Nanoengineering of Bioresource-Derived Graphene Quantum Dots as Ultrasensitive Environmental Nanoprobes. ACS Appl. Mater. Interfaces, 14, 52289-52300, 2022
    120. M. D. Tsai, Y. L. Chen, J. W. Chang, S. C. Yang and C. W. Kung, Sulfonate-Functionalized Two-Dimensional Metal-Organic Framework as a "Dispersant" for Polyaniline to Boost Its Electrochemical Capacitive Performance. ACS Appl. Energy Mater., 6, 11268-11277, 2023
    121. H. J. Li, K. Gao, B. Y. Mo, Q. Meng, K. Li, J. Wu and H. W. Hou, Construction of porous 2D MOF nanosheets for rapid and selective adsorption of cationic dyes. Dalton Trans., 50, 3348-3355, 2021
    122. J. Liu, Z. Li, X. Zhang, K.-i. Otake, L. Zhang, A. W. Peters, M. J. Young, N. M. Bedford, S. P. Letourneau and D. J. Mandia, Introducing nonstructural ligands to zirconia-like metal–organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation. ACS Catal., 9, 3198-3207, 2019
    123. Y. D. Song, W. H. Ho, Y. C. Chen, J. H. Li, Y. S. Wang, Y. J. Gu, C. H. Chuang and C. W. Kung, Selective Formation of Polyaniline Confined in the Nanopores of a Metal-Organic Framework for Supercapacitors. Chem. Eur. J., 27, 3560-3567, 2021
    124. W. Q. Tang, Y. J. Zhao, M. Xu, J. Y. Xu, S. S. Meng, Y. D. Yin, Q. H. Zhang, L. Gu, D. H. Liu and Z. Y. Gu, Controlling the Stacking Modes of Metal-Organic Framework Nanosheets through Host-Guest Noncovalent Interactions. Angew. Chem. Int. Ed., 60, 6920-6925, 2021
    125. S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong and S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS nano, 7, 1239-1245, 2013
    126. S. Y. Moon, Y. Y. Liu, J. T. Hupp and O. K. Farha, Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework. Angew. Chem. Int. Ed., 54, 6795-6799, 2015
    127. H. Noh, C.-W. Kung, K.-i. Otake, A. W. Peters, Z. Li, Y. Liao, X. Gong, O. K. Farha and J. T. Hupp, Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework. ACS Catal., 8, 9848-9858, 2018
    128. P. Jin, L. Wang, X. Ma, R. Lian, J. Huang, H. She, M. Zhang and Q. Wang, Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl. Catal. B, 284, 119762, 2021
    129. Y. Su, Z. Zhang, H. Liu and Y. Wang, Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl. Catal. B, 200, 448-457, 2017
    130. Z. Li, A. W. Peters, V. Bernales, M. A. Ortuno, N. M. Schweitzer, M. R. DeStefano, L. C. Gallington, A. E. Platero-Prats, K. W. Chapman, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, Metal−Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Cent. Sci., 3, 31-38, 2017
    131. Z. Li, A. W. Peters, A. E. Platero-Prats, J. Liu, C. W. Kung, H. Noh, M. R. DeStefano, N. M. Schweitzer, K. W. Chapman, J. T. Hupp and O. K. Farha, Fine-Tuning the Activity of Metal−Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. J. Am. Chem. Soc., 139, 15251-15258, 2017
    132. J. Wang, Y. Wang and D. Zhang, Exploring the bactericidal performance and application of novel mimic enzyme Co4S3. J. Colloid Interface Sci., 561, 327-337, 2020
    133. S. Hashmi, M. Singh, P. Weerathunge, E. L. H. Mayes, P. D. Mariathomas, S. N. Prasad, R. Ramanathan and V. Bansal, Cobalt Sulfide Nanosheets as Peroxidase Mimics for Colorimetric Detection of l-Cysteine. ACS Appl. Nano Mater., 4, 13352-13362, 2021
    134. Y. Yuan, J. Xu, Z. Y. Zhao, H. Li, K. Wang, Z. Wang and L. P. Wang, Design and Characterization of a Novel Artificial Peroxidase. Catalysts, 9, 2019
    135. W. H. Ho, S. C. Li, Y. C. Wang, T. E. Chang, Y. T. Chiang, Y. P. Li and C. W. Kung, Proton-Conductive Cerium-Based Metal–Organic Frameworks. ACS Appl. Mater. Interfaces, 13, 55358-55366, 2021
    136. B. Jiang, D. Duan, L. Gao, M. Zhou, K. Fan, Y. Tang, J. Xi, Y. Bi, Z. Tong, G. F. Gao, N. Xie, A. Tang, G. Nie, M. Liang and X. Yan, Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc., 13, 1506-1520, 2018
    137. M. Zandieh and J. Liu, Nanozyme Catalytic Turnover and Self-Limited Reactions. ACS Nano, 15, 15645-15655, 2021
    138. Z. Nickolov, G. Georgiev, D. Stoilova and I. Ivanov, Raman and IR study of cobalt acetate dihydrate. J. Mol. Struct., 354, 119-125, 1995
    139. T. Abza, D. G. Dadi, F. G. Hone, T. C. Meharu, G. Tekle, E. B. Abebe and K. S. Ahmed, Characterization of Cobalt Sulfide Thin Films Synthesized from Acidic Chemical Baths. Adv. Mater. Sci. Eng. , 2020, 2628706, 2020
    140. H. Furukawa, F. Gandara, Y. B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson and O. M. Yaghi, Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. J. Am. Chem. Soc., 136, 4369-4381, 2014
    141. P. Tan, Y. Liu, A. Zhu, W. Zeng, H. Cui and J. Pan, Rational Design of Z-Scheme System Based on 3D Hierarchical CdS Supported 0D Co9S8 Nanoparticles for Superior Photocatalytic H2 Generation. ACS Sustainable Chem. Eng., 6, 10385-10394, 2018
    142. D. Xiong, Q. Zhang, S. M. Thalluri, J. Xu, W. Li, X. Fu and L. Liu, One-Step Fabrication of Monolithic Electrodes Comprising Co9 S8 Particles Supported on Cobalt Foam for Efficient and Durable Oxygen Evolution Reaction. Chem. Eur. J., 23, 8749-8755, 2017
    143. S.-H. Chang, M.-D. Lu, Y.-L. Tung and H.-Y. Tuan, Gram-Scale Synthesis of Catalytic Co9S8 Nanocrystal Ink as a Cathode Material for Spray-Deposited, LargeArea Dye-Sensitized Solar Cells. ACS Nano, 7, 9443-9451, 2013
    144. W. Song, B. Zhao, C. Wang, Y. Ozaki and X. Lu, Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J. Mater. Chem. B, 7, 850-875, 2019
    145. H. Wei and E. Wang, Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem., 80, 2250-2254, 2008
    146. B. Yan, Lanthanide-Functionalized Metal-Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing. Acc. Chem. Res., 50, 2789-2798, 2017

    無法下載圖示 校內:2026-01-13公開
    校外:2026-01-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE