| 研究生: |
翁維勵 Weng, Wei-Li |
|---|---|
| 論文名稱: |
製備中孔洞材料應用於磷化氫氣體的吸附與感測 Synthesis of Mesoporous Materials for Adsorption and Sensing of Phosphine Gas |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 氧化銅 、磷化氫 、氧化鈦奈米管 |
| 外文關鍵詞: | CuO, PH3, Titanium nanotube |
| 相關次數: | 點閱:117 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來半導體產業蓬勃發展,產生了相當可觀的有毒廢氣,例如PH3。這些氣體對於晶圓本身以及人體都具有相當大的毒害,為了解決PH3造成的危害,近年來的研究發現氧化銅對PH3氣體具有良好的吸附效果,本研究合成兩類型PH3吸附劑,分別為以TNT(Titanium nanotube)為載體之CuO/TNT複合材料及具有特殊結構氧化銅,所合成材料對PH3氣體具有高吸附效能,而CuO/TNT複合材料可進一步進行對低濃度PH3氣體進行感測。
(1) 異相成核法製備CuO/TNT複合材料
本研究以簡單的異相成核法合成得到具有高表面積(約250 m2/g)的CuO/TNT複合材料,以Na2CO3為鹼源於適當的成核條件下,CuO/TNT比例< 0.4能使CuO奈米顆粒均勻的分布在TNT管子上,將CuO/TNT複合材料做半導體毒性氣體PH3的吸附與感測,CuO/TNT對PH3有高吸附效率(>99%),高分散性的氧化銅於TNT上增加了氧化銅催化的面積以及活性,進一步利用反射式IR將材料應用於低濃度PH3氣體的感測,一樣具有高靈敏度,CuO/TNT複合材料對PH3氣體具有高吸附與感測效果。
(2) 水熱法高活性氧化銅材料
本研究以醋酸銅作為前驅物以簡單水熱反應合成出三種不同型態且具有高表面積的奈米結構之氧化銅材料。直接以NaOH 為鹼源,調整Cu(OAc)2水溶液的pH值後進水熱反應即可合成得杏仁核狀氧化銅,產物外觀具有高一致性,具有高表面積約70 m2g-1,將其應用於PH3氣體的吸附得到杏仁核狀氧化銅對PH3具有高攔截率(~97%);加入結構導向劑P123於Cu(OAc)2水溶液中分散均勻後進水熱反應即可合成得到蒲公英狀氧化銅,產物具有階層狀結構,由奈米線狀結構組成微米蒲公英球,本研究產物雖然具有特殊結構與高表面積約50 m2g-1,但其產率過低,水溶液仍殘留許多銅離子,不適合大量製備,且殘留的銅離子需要再進一步的處理,是需要克服的問題;加入螯合劑檸檬酸鈉於Cu(OAc)2水溶液中分散均勻調整pH值後進水熱反應得次穩定產物檸檬酸銅,經由鍛燒反應將有機物燒掉即得不規則塊狀氧化銅,產物具有階層狀結構與高表面積約70 m2g-1,由奈米顆粒堆積成不規則塊狀,將其應用於PH3氣體吸附仍具有高攔截率(>99%)。
Phosphine (PH3), a toxic hydride, is commonly used as a dopant gas in semiconductor industries. According to the National Institute for Occupational Safety and Health (NIOSH) pocket guide, PH3 could cause immediate death at a level of 50 ppm. Recent studies have found that CuO demonstrates strong adsorption capacity toward PH3 gas removal. In this research, we prepared two kinds of CuO-materials for adsorption of phosphine.
Part 1. Synthesis of CuO/TNT nanocomposite by Heterogeneous Nucleation
Titanium nanotube (denoted as TNT) with surface area of around 280 m2/g and pore size of 9.0 nm was prepared by using a typical synthetic method. Owing to the high surface area, we used the TNT as the supporters for well dispersion of CuO as the active sites. The CuO/TNT nanocomposite with high dispersity of CuO can be obtained from heterogeneous nucleation of Cu(OH)2 on the TNT and calcination at mild temperature. In practice, the CuO/TNT nanocomposite was used as a high-performance adsorbent and sensor for PH3 gas.
Part 2. Synthesis of nanostructured CuO with high surface area by hydrothermal reaction
We prepared three kinds of nanostructured CuO in novel morphologies via hydrothermal method by using copper acetate aqueous solution as precursor. The nanostructured CuO in amygdala shape with high surface area of around 70 m2g-1 was synthesized by directly adjusting the pH of Cu(OAc)2 solution with NaOH solution, and then hydrothermal reaction for 6 h. When adding Pluronic P123 as structure-directing agent, a dandelion-like CuO structure was generated instead. The dandelion-like has hierarchical structure and high surface area of around 50 m2g-1 , but the yield of product is quite low. The nanostructured CuO irregular blocks with hierarchical structure and high surface area of around 70 m2g-1 via metastable product copper citrate prepared by using citrate as chelating agent. We used these nanostructured CuO materials to adsorb PH3, and these CuO materials exhibited high-performance for PH3 removal.
1.A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem Rev, 1995, 95, 735-758.
2.M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem Rev, 1995, 95, 69-96.
3.K. Hashimoto, H. Irie and A. Fujishima, Jpn J Appl Phys 1, 2005, 44, 8269-8285.
4.S. N. Frank and A. J. Bard, J Am Chem Soc, 1977, 99, 303-304.
5.B. Kraeutler and A. J. Bard, J Am Chem Soc, 1978, 100, 2239-2240.
6.H. Reiche, W. W. Dunn and A. J. Bard, J Phys Chem-Us, 1979, 83, 2248-2251.
7.C. Anderson and A. J. Bard, J Phys Chem B, 1997, 101, 2611-2616.
8.T. Ohno, J Jpn Petrol Inst, 2006, 49, 168-176.
9.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269-271.
10.S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright and R. M. Lambert, J Am Chem Soc, 2007, 129, 13790-13791.
11.Y. Cong, J. L. Zhang, F. Chen and M. Anpo, J Phys Chem C, 2007, 111, 6976-6982.
12.C. S. Yang and C. J. Chen, Appl Catal a-Gen, 2005, 294, 40-48.
13.C. Anderson and A. J. Bard, J Phys Chem-Us, 1995, 99, 17963-17963.
14.C. Anderson and A. J. Bard, J Phys Chem B, 1997, 101, 2611-2616.
15.Y. Cao, X. T. Zhang, W. S. Yang, H. Du, Y. B. Bai, T. J. Li and J. N. Yao, Chem Mater, 2000, 12, 3445-3448.
16.S. D. Mo and W. Y. Ching, Phys Rev B, 1995, 51, 13023-13032.
17.X. Chen and S. S. Mao, Chem Rev, 2007, 107, 2891-2959.
18.U. Diebold, Surf Sci Rep, 2003, 48, 53-229.
19.A. Mills and S. LeHunte, J Photoch Photobio A, 1997, 108, 1-35.
20.呂宗昕編著, “圖解奈米科技與光觸媒”, 商周出版, 2003.
21.S. Iijima, Nature, 1991, 354, 56-58.
22.R. Tenne, L. Margulis, M. Genut and G. Hodes, Nature, 1992, 360, 444-446.
23.M. Adachi, Y. Murata, M. Harada and S. Yoshikawa, Chem Lett, 2000, 942-943.
24.M. Adachi, Y. Murata, I. Okada and S. Yoshikawa, J Electrochem Soc, 2003, 150, G488-G493.
25.P. Hoyer, Langmuir, 1996, 12, 1411-1413.
26.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 1998, 14, 3160-3163.
27.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Adv Mater, 1999, 11, 1307-1311.
28.R. Z. Ma, K. Fukuda, T. Sasaki, M. Osada and Y. Bando, J Phys Chem B, 2005, 109, 6210-6214.
29.A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio and H. Aritani, J Mater Sci, 2004, 39, 4239-4245.
30.Q. Chen, G. H. Du, S. Zhang and L. M. Peng, Acta Crystallogr B, 2002, 58, 587-593.
31.Q. Chen, W. Z. Zhou, G. H. Du and L. M. Peng, Adv Mater, 2002, 14, 1208-1211.
32.X. M. Sun and Y. D. Li, Chem-Eur J, 2003, 9, 2229-2238.
33.C. C. Tsai and H. S. Teng, Chem Mater, 2004, 16, 4352-4358.
34.C. C. Tsai and H. S. Teng, Chem Mater, 2006, 18, 367-373.
35.Z. Y. Yuan and B. L. Su, Colloid Surface A, 2004, 241, 173-183.
36.D. V. Bavykin, V. N. Parmon, A. A. Lapkin and F. C. Walsh, J Mater Chem, 2004, 14, 3370-3377.
37.D. V. Bavykin, J. M. Friedrich, A. A. Lapkin and F. C. Walsh, Chem Mater, 2006, 18, 1124-1129.
38.M. Zhang, Z. S. Jin, J. W. Zhang, X. Y. Guo, H. J. Yang, W. Li, X. D. Wang and Z. J. Zhang, J Mol Catal a-Chem, 2004, 217, 203-210.
39.B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang, Appl Phys Lett, 2003, 82, 281-283.
40.D. J. Yang, H. W. Liu, Z. F. Zheng, Y. Yuan, J. C. Zhao, E. R. Waclawik, X. B. Ke and H. Y. Zhu, J Am Chem Soc, 2009, 131, 17885-17893.
41.C. Fox, Cosmet Toiletries, 1984, 99, 28-31.
42.M. E. L. C. T. Kresge, J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
43.B. W. N. D. J. Mithchell, J. Chem. Soc., 1981, 77, 1264.
44. S. M. Chang, Y. Y. Hsu and T. S. Chan, J Phys Chem C, 2011, 115, 2005-2013.
45.國科會高瞻自然科學教學平台-配位基(Ligands)與螯合基(Chelating ligands) http://case.ntu.edu.tw/hs/wordpress/?p=41182.
46.馬振基, 奈米材料科技原理與應用, 全華科技圖書股份有限公司, 2003.
47.R. I. Walton, Chem. Soc. Rev, 2002, 31, 230.
48.C. A. R. D. J. Watson, Am. Ceram. Soc. Inc., 1988, 1, 154.
49. S. H. Yu, J. Yang, Z. H. Han, Y. Zhou, R. Y. Yang, Y. T. Qian, Y.H. Zhang, J. Mater. Chem. 1999, 9, 1283.
50. Y. W. Jun, J. H. Lee, J. S. Choi, J. J. Cheon, J. Phys. Chem. B. 2005, 109, 14795.
51.L. D. S. J. Zhang, J. L. Yin, H. L. Su, C. S. Liao, C. H. Yan, Chem. Mater., 2002, 14, 4172.
52.C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 2002, 41, 1188.
53. J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Science. 2000, 289, 751.
54. R. L. Penn, J. F. Banfield, Science. 1998, 281, 969.
55. R. L. Penn, J. F. Banfield, Geochim, Cosmochim, Acta, 1999, 63, 1549.
56. K. Govender, D. S. Boyle, P. B. Kenway, P. O'Brien, J. Mater.Chem. 2004, 14, 2575.
57. C. H. Gu, V. Y. Jr, J.W. Grant, J. Pharm. Sci. 2001, 90, 1878
58. J. H. ter Horst, R. M. Geertman, G. M. van Rosmalen, J. Cryst.Growth. 2001, 230, 277.
59. X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343.
60. B. M. Wen, C. Y. Liu, Y. Liu, New J. Chem. 2005, 29, 969.
61.B. Cheng, E. T. Samulski, Chem. Commun. 2004, 986.
62.H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, J. Xu, Y. Li,Cryst. Growth.Des. 2005, 5, 1801.
63. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Nanotechnology, 2004, 15, 622.
64.L. Guo, S Yang, C. Yang, P. Yu, J. Wang, W. Ge, G. K. Wong,Chem. Mater. 2000, 12, 2268.
65. J. Joo, S. G. Kwon, J. H. Yu, T. Hyeon, Adv. Mater. 2005, 17, 1873.
66.Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
67. X. Peng, Adv. Mater. 2003, 15, 459.
68. M. Yang, G. Pang, L. Jiang, S. Feng, Nanotechnology. 2006, 17, 206.