簡易檢索 / 詳目顯示

研究生: 劉宇帆
Liu, Yu-Fan
論文名稱: 不同運動模式對小鼠學習與記憶及相關蛋白質表現的影響
Effects of Different Exercise Paradigms on Learning and Memory and Related Protein Expression in Mice
指導教授: 陳洵瑛
Chen, Hsiun-ing
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 78
中文關鍵詞: 運動學習與記憶
外文關鍵詞: Exercise, Learning and memory
相關次數: 點閱:98下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多突觸蛋白及神經生長因子常參與在大腦邊緣系統的學習與記憶當中,例如Ca2+-dependent突觸蛋白synaptotagmin (Syt)及大腦衍生性神經生長因子(BDNF)和其受體TrkB皆參與在海馬迴或杏仁核相關之學習與記憶中。已知不論是非自主性跑步機運動或自主性滾輪運動皆能增進實驗動物的嫌惡學習與記憶(aversive learning and memory)或空間學習與記憶(spatial learning and memory)。然而,跑步機運動訓練是否透過增加上述分子之表現而達到促進學習與記憶的效果,以及不同的運動模式是否會對上述分子表現產生不同的影響進而調控不同的學習與記憶模式,目前則尚不清楚。為了回答這些問題,我們給予雄性BALB/c小鼠為期四週的跑步機運動訓練或自主性滾輪運動。運動後則以單次抑制性迴避學習(one-trial passive avoidance)或莫氏水迷宮(Morris water maze)測試其兩種學習與記憶之功能。另以酵素免疫分析法(ELISA)及西方點墨法(Western blotting)偵測小鼠大腦海馬迴及杏仁核區域之BDNF, TrkB和Syt I蛋白質表現。結果顯示: 1) 跑步機運動訓練及自主性滾輪運動皆能促進莫氏水迷宮之空間學習,但只有跑步機運動訓練能夠增進抑制性迴避之嫌惡學習與記憶; 2) 兩種運動模式皆能短暫增加海馬迴BDNF及持續增加海馬迴TrkB及Syt I蛋白質表現; 3) 只有跑步機運動訓練能夠短暫增加杏仁核BDNF及持續增加杏仁核Syt I蛋白質表現; 4) 在海馬迴或側杏仁核區域給予TrkB抑制劑,K252a,皆會抑制跑步機運動所促進的嫌惡學習與記憶及相關蛋白質的表現; 5) 在側杏仁核區域給予Syt I lentiviral -shRNA去抑制Syt I的表現,亦能抑制由跑步機運動所促進的嫌惡學習與記憶。由上述結果我們得知: 跑步機運動訓練所提升之BDNF/TrkB及Syt I的表現是參與在跑步機運動所增進的嫌惡學習與記憶當中。此外,跑步機運動訓練及自主性滾輪運動對嫌惡學習與記憶所產生不同之影響,則可能肇因於其對杏仁核突觸可塑性相關蛋白質表現影響之不同。

    Learning and memory usually involve various synaptic proteins and neurotrophic factors in the limbic system. Among these molecules, synaptic protein such as synaptotagmin (Syt), a Ca2+-dependent synaptic vesicle protein, the brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB) have been discovered to play some roles in hippocampus or amygdala associated learning and memory. Recent studies indicate that both treadmill exercise and voluntary wheel running can improve aversive memory and spatial memory in rodents. Whether treadmill exercise training can improve learning and memory by upregulating some of these molecules and whether different types of exercise affect different learning/memory behavior tasks, BDNF-TrkB signaling and Syt expression differentially remains unclear. To answer these questions, BALB/c mice were trained by treadmill exercise or voluntary wheel running for 4 weeks. The ability of learning and memory after exercise was evaluated by passive avoidance (PA) test and Morris water maze. Hippocampal or amygdalar TrkB and Syt I protein expression after exercise were determined by Western blotting and BDNF was evaluated by ELISA. Our results showed that 1) both treadmill exercise and wheel running improve spatial learning and memory in Morris water maze, but only treadmill exercise improves aversive memory in PA test; 2) Both two exercises transiently increased the hippocampal BDNF level and persistently increased the hippocampal protein levels of full-length TrkB and Syt; 3) Only treadmill exercise transiently increased the amygdalar BDNF level and persistently increased the amygdalar protein levels of Syt; 4) Local administration of K252a into the hippocampus or basolateral amygdala to blunt TrkB signaling abolished treadmill exercise-enhanced PA performance and related protein expression; 5) Local administration of Syt I lentiviral-shRNA into the basolateral amygdala to inhibit Syt I expression also abolished treadmill exercise-enhanced PA performance and amygdalar Syt I expression. In conclusion, these data suggest that the upregulation of TrkB and Syt I may contribute to the exercise-facilitated aversive memory. Furthermore, moderate treadmill exercise and voluntary wheel running have differential effects on the aversive learning and memory, possibly due to the diverse influences on synaptic plasticity-related proteins in the amygdala.

    中文摘要......1 英文摘要......2 圖目錄........4 附圖目錄......7 附表目錄......8 緒論..........9 實驗設計.....13 材料及方法...14 結果.........25 討論.........30 結論.........37 圖...........38 附圖.........60 附表.........66 參考文獻.....68 著作.........77 作者履歷.....78

    1. Adolfsen, B., & Littleton, J. T. (2001). Genetic and molecular analysis of the synaptotagmin family. Cell Mol Life Sci, 58, 393-402.
    2. Alaei, H., Borjeian, L., Azizi, M., Orian, S., Pourshanazari, A., & Hanninen, O. (2006). Treadmill running reverses retention deficit induced by morphine. Eur J Pharmacol, 536, 138-141.
    3. Ang, E. T., Dawe, G. S., Wong, P. T., Moochhala, S., & Ng, Y. K. (2006). Alterations in spatial learning and memory after forced exercise. Brain Res, 1113, 186-193.
    4. Ang, E. T., & Gomez-Pinilla, F. (2007). Potential therapeutic effects of exercise to the brain. Curr Med Chem, 14, 2564-2571.
    5. Asl, N. A., Sheikhzade, F., Torchi, M., Roshangar, L., & Khamnei, S. (2008). Long-term regular exercise promotes memory and learning in young but not in older rats. Pathophysiology, 15, 9-12.
    6. Burghardt, P. R., Fulk, L. J., Hand, G. A., & Wilson, M. A. (2004). The effects of chronic treadmill and wheel running on behavior in rats. Brain Res, 1019, 84-96.
    7. Chang, H. P., Lindberg, F. P., Wang, H. L., Huang, A. M., & Lee, E. H. (1999). Impaired memory retention and decreased long-term potentiation in integrin-associated protein-deficient mice. Learn Mem, 6, 448-457.
    8. Chang, Y. T., Chen, Y. C., Wu, C. W., Yu, L., Chen, H. I., Jen, C. J., & Kuo, Y. M. (2008). Glucocorticoid signaling and exercise-induced downregulation of the mineralocorticoid receptor in the induction of adult mouse dentate neurogenesis by treadmill running. Psychoneuroendocrinology, 33, 1173-1182.
    9. Chapman, E. R. (2002). Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol, 3, 498-508.
    10. Chen, H. I., Lin, L. C., Yu, L., Liu, Y. F., Kuo, Y. M., Huang, A. M., Chuang, J. I., Wu, F. S., Liao, P. C., & Jen, C. J. (2008). Treadmill exercise enhances passive avoidance learning in rats: the role of down-regulated serotonin system in the limbic system. Neurobiol Learn Mem, 89, 489-496.
    11. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci, 25, 295-301.
    12. Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci, 30, 464-472.
    13. Decker, M. W., Tran, T., & McGaugh, J. L. (1990). A comparison of the effects of scopolamine and diazepam on acquisition and retention of inhibitory avoidance in mice. Psychopharmacology (Berl), 100, 515-521.
    14. Deltheil, T., Guiard, B. P., Guilloux, J. P., Nicolas, L., Delomenie, C., Reperant, C., Le Maitre, E., Leroux-Nicollet, I., Benmansour, S., Coudore, F., David, D. J., & Gardier, A. M. (2008). Consequences of changes in BDNF levels on serotonin neurotransmission, 5-HT transporter expression and function: studies in adult mice hippocampus. Pharmacol Biochem Behav, 90, 174-183.
    15. Dishman, R. K. (1997). Brain monoamines, exercise, and behavioral stress: animal models. Med Sci Sports Exerc, 29, 63-74.
    16. Dishman, R. K., Berthoud, H. R., Booth, F. W., Cotman, C. W., Edgerton, V. R., Fleshner, M. R., Gandevia, S. C., Gomez-Pinilla, F., Greenwood, B. N., Hillman, C. H., Kramer, A. F., Levin, B. E., Moran, T. H., Russo-Neustadt, A. A., Salamone, J. D., Van Hoomissen, J. D., Wade, C. E., York, D. A., & Zigmond, M. J. (2006). Neurobiology of exercise. Obesity (Silver Spring), 14, 345-356.
    17. Ferguson, G. D., Anagnostaras, S. G., Silva, A. J., & Herschman, H. R. (2000). Deficits in memory and motor performance in synaptotagmin IV mutant mice. Proc Natl Acad Sci U S A, 97, 5598-5603.
    18. Ferguson, G. D., Wang, H., Herschman, H. R., & Storm, D. R. (2004). Altered hippocampal short-term plasticity and associative memory in synaptotagmin IV (-/-) mice. Hippocampus, 14, 964-974.
    19. Fordyce, D. E., & Wehner, J. M. (1993). Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Res, 619, 111-119.
    20. Hayes, K., Sprague, S., Guo, M., Davis, W., Friedman, A., Kumar, A., Jimenez, D. F., & Ding, Y. (2008). Forced, not voluntary, exercise effectively induces neuroprotection in stroke. Acta Neuropathol, 115, 289-296.
    21. Hou, Q., Gao, X., Zhang, X., Kong, L., Wang, X., Bian, W., Tu, Y., Jin, M., Zhao, G., Li, B., Jing, N., & Yu, L. (2004). SNAP-25 in hippocampal CA1 region is involved in memory consolidation. Eur J Neurosci, 20, 1593-1603.
    22. Huang, A. M., Jen, C. J., Chen, H. F., Yu, L., Kuo, Y. M., & Chen, H. I. (2006). Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J Neural Transm, 113, 803-811.
    23. Iso, H., Simoda, S., & Matsuyama, T. (2007). Environmental change during postnatal development alters behaviour, cognitions and neurogenesis of mice. Behav Brain Res, 179, 90-98.
    24. Kandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science, 294, 1030-1038.
    25. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493-495.
    26. Koponen, E., Voikar, V., Riekki, R., Saarelainen, T., Rauramaa, T., Rauvala, H., Taira, T., & Castren, E. (2004). Transgenic mice overexpressing the full-length neurotrophin receptor trkB exhibit increased activation of the trkB-PLCgamma pathway, reduced anxiety, and facilitated learning. Mol Cell Neurosci, 26, 166-181.
    27. Kuipers, S. D., & Bramham, C. R. (2006). Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Devel, 9, 580-586.
    28. Kushner, S. A., Elgersma, Y., Murphy, G. G., Jaarsma, D., van Woerden, G. M., Hojjati, M. R., Cui, Y., LeBoutillier, J. C., Marrone, D. F., Choi, E. S., De Zeeuw, C. I., Petit, T. L., Pozzo-Miller, L., & Silva, A. J. (2005). Modulation of presynaptic plasticity and learning by the H-ras/extracellular signal-regulated kinase/synapsin I signaling pathway. J Neurosci, 25, 9721-9734.
    29. Leasure, J. L., & Jones, M. (2008). Forced and voluntary exercise differentially affect brain and behavior. Neuroscience.
    30. Liu, Y. F., Chen, H. I., Yu, L., Kuo, Y. M., Wu, F. S., Chuang, J. I., Liao, P. C., & Jen, C. J. (2008). Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol Learn Mem, 90, 81-89.
    31. Ma, Y. L., Wang, H. L., Wu, H. C., Wei, C. L., & Lee, E. H. (1998). Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience, 82, 957-967.
    32. Masaki, T., & Nakajima, S. (2006). Taste aversion in rats induced by forced swimming, voluntary running, forced running, and lithium chloride injection treatments. Physiol Behav, 88, 411-416.
    33. McGaugh, J. L., McIntyre, C. K., & Power, A. E. (2002). Amygdala modulation of memory consolidation: interaction with other brain systems. Neurobiol Learn Mem, 78, 539-552.
    34. Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, C., Lipp, H. P., Bonhoeffer, T., & Klein, R. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24, 401-414.
    35. Mizuno, M., Yamada, K., He, J., Nakajima, A., & Nabeshima, T. (2003). Involvement of BDNF receptor TrkB in spatial memory formation. Learn Mem, 10, 108-115.
    36. Mizuno, M., Yamada, K., Olariu, A., Nawa, H., & Nabeshima, T. (2000). Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci, 20, 7116-7121.
    37. Molteni, R., Wu, A., Vaynman, S., Ying, Z., Barnard, R. J., & Gomez-Pinilla, F. (2004). Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience, 123, 429-440.
    38. Molteni, R., Ying, Z., & Gomez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci, 16, 1107-1116.
    39. Mu, J. S., Li, W. P., Yao, Z. B., & Zhou, X. F. (1999). Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res, 835, 259-265.
    40. Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res, 726, 49-56.
    41. Ou, L. C., & Gean, P. W. (2007). Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol, 72, 350-358.
    42. Parker, K. J., Buckmaster, C. L., Justus, K. R., Schatzberg, A. F., & Lyons, D. M. (2005). Mild early life stress enhances prefrontal-dependent response inhibition in monkeys. Biol Psychiatry, 57, 848-855.
    43. Ploughman, M., Granter-Button, S., Chernenko, G., Tucker, B. A., Mearow, K. M., & Corbett, D. (2005). Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience, 136, 991-1001.
    44. Radak, Z., Kaneko, T., Tahara, S., Nakamoto, H., Pucsok, J., Sasvari, M., Nyakas, C., & Goto, S. (2001). Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int, 38, 17-23.
    45. Rattiner, L. M., Davis, M., French, C. T., & Ressler, K. J. (2004). Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J Neurosci, 24, 4796-4806.
    46. Rickard, N. S., Gibbs, M. E., & Ng, K. T. (1999). Inhibition of the endothelial isoform of nitric oxide synthase impairs long-term memory formation in the chick. Learn Mem, 6, 458-466.
    47. Samorajski, T., Delaney, C., Durham, L., Ordy, J. M., Johnson, J. A., & Dunlap, W. P. (1985). Effect of exercise on longevity, body weight, locomotor performance, and passive-avoidance memory of C57BL/6J mice. Neurobiol Aging, 6, 17-24.
    48. Shimazu, K., Zhao, M., Sakata, K., Akbarian, S., Bates, B., Jaenisch, R., & Lu, B. (2006). NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learn Mem, 13, 307-315.
    49. Smith, M. A., Makino, S., Kvetnansky, R., & Post, R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci, 15, 1768-1777.
    50. Soya, H., Mukai, A., Deocaris, C. C., Ohiwa, N., Chang, H., Nishijima, T., Fujikawa, T., Togashi, K., & Saito, T. (2007). Threshold-like pattern of neuronal activation in the hypothalamus during treadmill running: establishment of a minimum running stress (MRS) rat model. Neurosci Res, 58, 341-348.
    51. Soya, H., Nakamura, T., Deocaris, C. C., Kimpara, A., Iimura, M., Fujikawa, T., Chang, H., McEwen, B. S., & Nishijima, T. (2007). BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun, 358, 961-967.
    52. Tartaglia, N., Du, J., Tyler, W. J., Neale, E., Pozzo-Miller, L., & Lu, B. (2001). Protein synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor. J Biol Chem, 276, 37585-37593.
    53. Tong, L., Shen, H., Perreau, V. M., Balazs, R., & Cotman, C. W. (2001). Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis, 8, 1046-1056.
    54. Tyler, W. J., Alonso, M., Bramham, C. R., & Pozzo-Miller, L. D. (2002). From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem, 9, 224-237.
    55. Uysal, N., Tugyan, K., Kayatekin, B. M., Acikgoz, O., Bagriyanik, H. A., Gonenc, S., Ozdemir, D., Aksu, I., Topcu, A., & Semin, I. (2005). The effects of regular aerobic exercise in adolescent period on hippocampal neuron density, apoptosis and spatial memory. Neurosci Lett, 383, 241-245.
    56. van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A, 96, 13427-13431.
    57. van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci, 25, 8680-8685.
    58. Vaynman, S., & Gomez-Pinilla, F. (2006). Revenge of the "sit": how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res, 84, 699-715.
    59. Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci, 20, 2580-2590.
    60. Williams, B. M., Luo, Y., Ward, C., Redd, K., Gibson, R., Kuczaj, S. A., & McCoy, J. G. (2001). Environmental enrichment: effects on spatial memory and hippocampal CREB immunoreactivity. Physiol Behav, 73, 649-658.
    61. Yoshihara, M., & Montana, E. S. (2004). The synaptotagmins: calcium sensors for vesicular trafficking. Neuroscientist, 10, 566-574.

    下載圖示 校內:立即公開
    校外:2009-07-03公開
    QR CODE