| 研究生: |
張千蕙 Chang, Chien-Huei |
|---|---|
| 論文名稱: |
建構自組裝M13噬菌體-氧化鐵奈米粒子之磁性噬菌體生物醫學應用平台 Development of Self-assembled M13 – Iron Oxide Nanoparticle Complex for Magnetic Phage Platform |
| 指導教授: |
謝達斌
Shieh, Dar-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 定點定位突變 、噬菌體 、寡核定位突變 、奈米粒子 |
| 外文關鍵詞: | site directed mutagenesis, oligonucleotide directed mutagenesis, M13 phage, nanoparticle |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米粒子由於尺寸效應、量子效應及高表面/體積比,近年來被廣泛地應用於藥物攜帶載體及在活體分子影像等等。而隨著病毒相關的研究愈漸深入,科學家也利用病毒進行遺傳工程、基因治療以及快速篩選並量產具標定功能的專一性結合子等。在此研究中,我們欲結合奈米粒子及噬菌體,以製造具有超順磁特性的噬菌體系統並探討其臨床診斷及治療之應用。首先,我們利用具有超順磁性的氧化鐵奈米粒子,表面被覆幾丁聚醣並攜帶抗癌藥物epirubicin。在核磁共振造影系統中,不論是在口腔癌細胞株SCC15之體外或是動物活體都可偵測到氧化鐵奈米粒子所造成T2及T2*訊號加成影像擷取模式下之負顯影效果;而抗癌藥物對癌細胞的毒殺性也不受到奈米粒子連結影響。然而,如何在生物體內增加磁場區域性導引作用外,又使奈米粒子對局部疾病細胞組織具有專一性標的將是活體應用成功關鍵之一。為了使噬菌體呈現技術的快速篩選及專一性能與超順磁氧化鐵奈米粒子做分子方位正確之自組裝結合,利用葉晨聖教授團隊合成之表面修飾Ni-NTA的氧化鐵奈米粒子作為研究模型。因修飾Ni-NTA的氧化鐵奈米粒子對與含六個組氨酸的胜肽具有高度的親附能力,因此若將此胜肽表現在M13噬菌體第七個基因所轉譯的外鞘蛋白質上,將能與修飾Ni-NTA的奈米粒子結合以成為具磁性的噬菌體。為此,我們成功地利用寡核定位突變的技術在第七個基因之5’-端(朝菌體外端)插入XhoI的限制酶切點,此插入序列將有利於未來接合能與奈米粒子形成專一連結之胜肽的DNA序列。本研究利用pET-20b(+)載體上具有的hexahistidine及pelB 領導序列,並利用定點定位突變在插入片段的兩端設計XhoI限制酶切點,進行接合反應以產生重組M13噬菌體。而藉由重組的M13噬菌體結合磁性奈米粒子除可增加在細胞及動物體上標的專一性外,也可藉由磁性而簡短純化專一噬菌體的時間等應用。然而從實驗結果顯示,我們並沒有得到重組的M13噬菌體;推測可能與插入片段太長導致噬菌體無法直接自行組裝,或修飾的新插入胜肽干擾病毒之生命週期,而其真正原因仍有待探討。同時推論利用噬質體的系統可改善此問題。未來,我們將更進一步生產具有磁性的噬菌體並應用在生物醫學上。
Nanoparticles have recently been widely investigated for biomedical applications as drug carriers and molecular imaging purposes due to their size effect, quantum effect and surface chemistry. Viruses have been engineered for gene therapy and rapid selection and amplification of functional ligands. In this study, we aimed to combine the two platforms for a novel magnetic phage system and to explore their potential applications in clinical diagnosis and therapy. We first synthesized superparamagnetic nanoparticles with chitosan surface modification to carry anti-cancer drug epirubicin. In MRI, the nanoparticles showed significant inversed contrast effect in the oral cancer cell line SCC15 model and in rat animal model under T2 and T2* weighed imaging. The drug carrier with MRI constract effect also successfully demonstrated anti-cancer efficacy in vitro, which enabled tracking delivery in future application. However, for in vivo application, a local targeting moiety is required to improve the specificity of the therapy in addition to the magnetic force regional guidance. The phage display system offered rapid selection, amplification and optimization of targeting ligands with specificity. To assemble phages with correct orientation on the nanoparticles, we synthesized the iron oxide nanoparticles which are modified with Ni-NTA and conjugated this onto the nanoparticles with superparamagnetic properties. The Ni-NTA complex is known to exhibit high affinity and specificity to a consecutive hexahistidine peptide domain. To artificially create this peptide tag onto a phage particle, gVII of M13 was modified by insertion of a restriction site through oligonucleotide-directed mutagenesis. The insertion sequence which contains hexahistidine and pelB leader sequence came from a pET-20b(+) vector. The insertion fragment was further modified by site-directed mutagenesis to create the same XhoI restriction sites in the two terminal ends. T4 DNA ligase was used to ligate the modified M13 vector and insertion fragment to create recombinant M13 phages. The desired phages were expected to exhibit high affinity with Ni-NTA nanoparticles. However the desired recombined M13 phages were not achieved through this strategy. It is speculatated that size of the insertion sequence maybe too long for the viral packing or the modified pVII may significantly affect the life cycle of M13 phages. It is suggested that phagemid system may provide a solution for the insertion of larger external peptides. We will continue research on this and evaluate functional applications of desired magnetic phages in medicine.
張立德、牟季美 奈米材料和奈米結構。滄海出版
張揚狀 (2005)表面被覆幾丁聚醣之多功能磁性奈米載體的製備與應用。國立成功大學化學工程研究所博士論文。
楊文仁、黃玫琪、曹雯珊、宣大衛 (2003)噬菌體呈現技術及其在生物科技上之應用。生物科學 第四十六卷 第一期 12 - 26 頁
Adda, C.G., Anders, R.F., Tilley, L. and Foley, M. (2002) Random sequence libraries displayed on phage: identification of biologically important molecules. Comb Chem High Throughput Screen 5, 1-14.
Blumer, K.J. and Steege, D.A. (1984) mRNA processing in Escherichia coli: an activity encoded by the host processes bacteriophage f1 mRNAs. Nucleic Acids Res 12, 1847-61.
Booser, D.J., Esteva, F.J., Rivera, E., Valero, V., Esparza-Guerra, L., Priebe, W. and Hortobagyi, G.N. (2002) Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother Pharmacol 50, 6-8.
Brigger, I., Dubernet, C. and Couvreur, P. (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54, 631-51.
Chang, Y.C. and Chen, D.H. (2005) Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent. Macromol Biosci 5, 254-61.
Davis, S.S. (1997) Biomedical applications of nanotechnology--implications for drug targeting and gene therapy. Trends Biotechnol 15, 217-24.
de la Fuente, J.M., Berry, C.C., Riehle, M.O. and Curtis, A.S. (2006) Nanoparticle targeting at cells. Langmuir 22, 3286-93.
Deng, L.W., Malik, P. and Perham, R.N. (1999) Interaction of the globular domains of pIII protein of filamentous bacteriophage fd with the F-pilus of Escherichia coli. Virology 253, 271-7.
Endemann, H. and Model, P. (1995) Location of filamentous phage minor coat proteins in phage and in infected cells. J Mol Biol 250, 496-506.
Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, C., Vila-Jato, J.L. and Alonso, M.J. (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16, 1576-81.
Foster, K.A., Yazdanian, M. and Audus, K.L. (2001) Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J Pharm Pharmacol 53, 57-66.
Fuentes, M., Mateo, C., Rodriguez, A., Casqueiro, M., Tercero, J.C., Riese, H.H., Fernandez-Lafuente, R. and Guisan, J.M. (2006) Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA. Biosens Bioelectron 21, 1574-80.
Gabizon, A., Price, D.C., Huberty, J., Bresalier, R.S. and Papahadjopoulos, D. (1990) Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Res 50, 6371-8.
Gao, C., Lin, C.H., Lo, C.H., Mao, S., Wirsching, P., Lerner, R.A. and Janda, K.D. (1997) Making chemistry selectable by linking it to infectivity. Proc Natl Acad Sci U S A 94, 11777-82.
Gao, C., Mao, S., Kaufmann, G., Wirsching, P., Lerner, R.A. and Janda, K.D. (2002) A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sci U S A 99, 12612-6.
Gao, C., Mao, S., Lo, C.H., Wirsching, P., Lerner, R.A. and Janda, K.D. (1999) Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci U S A 96, 6025-30.
Glucksman, M.J., Bhattacharjee, S. and Makowski, L. (1992) Three-dimensional structure of a cloning vector. X-ray diffraction studies of filamentous bacteriophage M13 at 7 A resolution. J Mol Biol 226, 455-70.
Guan, Y., Zhang, H. and Wang, A.H. (1995) Electrostatic potential distribution of the gene V protein from Ff phage facilitates cooperative DNA binding: a model of the GVP-ssDNA complex. Protein Sci 4, 187-97.
Gupta, A.K. and Curtis, A.S. (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15, 493-6.
Higashitani, A., Higashitani, N. and Horiuchi, K. (1997) Minus-strand origin of filamentous phage versus transcriptional promoters in recognition of RNA polymerase. Proc Natl Acad Sci U S A 94, 2909-14.
Higuchi, R., Krummel, B. and Saiki, R.K. (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16, 7351-67.
Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. and Pease, L.R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-9.
Hofschneider, P.H. and Preuss, A. (1963) M 13 Bacteriophage Liberation From Intact Bacteria As Revealed By Electron Microscopy. J Mol Biol 20, 450-1.
Holliger, P. and Riechmann, L. (1997) A conserved infection pathway for filamentous bacteriophages is suggested by the structure of the membrane penetration domain of the minor coat protein g3p from phage fd. Structure 5, 265-75.
Holliger, P., Riechmann, L. and Williams, R.L. (1999) Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 A: evidence for conformational lability. J Mol Biol 288, 649-57.
Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. and Pease, L.R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61-8.
Houbiers, M.C. and Hemminga, M.A. (2004) Protein-lipid interactions of bacteriophage M13 gene 9 minor coat protein. Mol Membr Biol 21, 351-9.
Houbiers, M.C., Spruijt, R.B., Wolfs, C.J. and Hemminga, M.A. (1999) Conformational and aggregational properties of the gene 9 minor coat protein of bacteriophage M13 in membrane-mimicking systems. Biochemistry 38, 1128-35.
Huang, M., Khor, E. and Lim, L.Y. (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21, 344-53.
Hufton, S.E., Moerkerk, P.T., Meulemans, E.V., de Bruine, A., Arends, J.W. and Hoogenboom, H.R. (1999) Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Methods 231, 39-51.
Iannolo, G., Minenkova, O., Petruzzelli, R. and Cesareni, G. (1995) Modifying filamentous phage capsid: limits in the size of the major capsid protein. J Mol Biol 248, 835-44.
Kehoe, J.W. and Kay, B.K. (2005) Filamentous phage display in the new millennium. Chem Rev 105, 4056-72.
Kishchenko, G., Batliwala, H. and Makowski, L. (1994) Structure of a foreign peptide displayed on the surface of bacteriophage M13. J Mol Biol 241, 208-13.
Koropchak, J.A., Sadain, S., Yang, X., Magnusson, L.E., Heybroek, M., Anisimov, M. and Kaufman, S.L. (1999) Nanoparticle detection technology for chemical analysis. Anal Chem 71, 386A-394A.
Kwasnikowski, P., Kristensen, P. and Markiewicz, W.T. (2005) Multivalent display system on filamentous bacteriophage pVII minor coat protein. J Immunol Methods 307, 135-43.
Ling, T.C., Loong, C.K., Tan, W.S., Tey, B.T., Abdullah, W.M. and Ariff, A. (2004) Purification of filamentous bacteriophage M13 by expanded bed anion exchange chromatography. J Microbiol 42, 228-32.
Liu, C., Honda, H., Ohshima, A., Shinkai, M. and Kobayashi, T. (2000) Development of chitosan-magnetite aggregates containing Nitrosomonas europaea cells for nitrification enhancement. J Biosci Bioeng 89, 420-5.
Liu, J., Levine, A.L., Mattoon, J.S., Yamaguchi, M., Lee, R.J., Pan, X. and Rosol, T.J. (2006) Nanoparticles as image enhancing agents for ultrasonography. Phys Med Biol 51, 2179-89.
Lubkowski, J., Hennecke, F., Pluckthun, A. and Wlodawer, A. (1998) The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p. Nat Struct Biol 5, 140-7.
Maeda, H., Wu, J., Sawa, T., Matsumura, Y. and Hori, K. (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65, 271-84.
Marciano, D.K., Russel, M. and Simon, S.M. (1999) An aqueous channel for filamentous phage export. Science 284, 1516-9.
Martin, A. and Schmid, F.X. (2003) The folding mechanism of a two-domain protein: folding kinetics and domain docking of the gene-3 protein of phage fd. J Mol Biol 329, 599-610.
Marvin, D.A., Hale, R.D., Nave, C. and Helmer-Citterich, M. (1994) Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and IKe. J Mol Biol 235, 260-86.
Marvin, D.A. and Hohn, B. (1969) Filamentous bacterial viruses. Bacteriol Rev 33, 172-209.
Mitra, S., Gaur, U., Ghosh, P.C. and Maitra, A.N. (2001) Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74, 317-23.
Moghimi, S.M. and Hunter, A.C. (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 18, 412-20.
Moghimi, S.M., Hunter, A.C. and Murray, J.C. (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53, 283-318.
Molinaro, G., Leroux, J.C., Damas, J. and Adam, A. (2002) Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23, 2717-22.
Nakamura, M., Tsumoto, K., Kumagai, I. and Ishimura, K. (2003) A morphologic study of filamentous phage infection of Escherichia coli using biotinylated phages. FEBS Lett 536, 167-72.
Nitin, N., LaConte, L.E., Zurkiya, O., Hu, X. and Bao, G. (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 9, 706-12.
Ohkawa, I. and Webster, R.E. (1981) The orientation of the major coat protein of bacteriophage f1 in the cytoplasmic membrane of Escherichia coli. J Biol Chem 256, 9951-8.
Opalka, N., Beckmann, R., Boisset, N., Simon, M.N., Russel, M. and Darst, S.A. (2003) Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J Mol Biol 325, 461-70.
Panyam, J. and Labhasetwar, V. (2003) Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 20, 212-20.
Park, J.H., Cho, Y.W., Chung, H., Kwon, I.C. and Jeong, S.Y. (2003) Synthesis and characterization of sugar-bearing chitosan derivatives: aqueous solubility and biodegradability. Biomacromolecules 4, 1087-91.
Piechocki, M.P. and Hines, R.N. (1994) Oligonucleotide design and optimized protocol for site-directed mutagenesis. Biotechniques 16, 702-7.
Qi, L., Xu, Z., Jiang, X., Hu, C. and Zou, X. (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339, 2693-700.
Rasched, I. and Oberer, E. (1986) Ff coliphages: structural and functional relationships. Microbiol Rev 50, 401-27.
Riechmann, L. and Holliger, P. (1997) The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell 90, 351-60.
Romsicki, Y. and Sharom, F.J. (1999) The membrane lipid environment modulates drug interactions with the P-glycoprotein multidrug transporter. Biochemistry 38, 6887-96.
Ruel-Gariepy, E., Leclair, G., Hildgen, P., Gupta, A. and Leroux, J.C. (2002) Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 82, 373-83.
Russel, M. and Model, P. (1985) Thioredoxin is required for filamentous phage assembly. Proc Natl Acad Sci U S A 82, 29-33.
Russel, M. and Model, P. (1986) The role of thioredoxin in filamentous phage assembly. Construction, isolation, and characterization of mutant thioredoxins. J Biol Chem 261, 14997-5005.
Scholle, M.D., Kehoe, J.W. and Kay, B.K. (2005) Efficient construction of a large collection of phage-displayed combinatorial peptide libraries. Comb Chem High Throughput Screen 8, 545-51.
Sharma, D., Chelvi, T.P., Kaur, J., Chakravorty, K., De, T.K., Maitra, A. and Ralhan, R. (1996) Novel Taxol formulation: polyvinylpyrrolidone nanoparticle-encapsulated Taxol for drug delivery in cancer therapy. Oncol Res 8, 281-6.
Shieh, D.B., Cheng, F.Y., Su, C.H., Yeh, C.S., Wu, M.T., Wu, Y.N., Tsai, C.Y., Wu, C.L., Chen, D.H. and Chou, C.H. (2005) Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents. Biomaterials 26, 7183-91.
Simeonova, M., Velichkova, R., Ivanova, G., Enchev, V. and Abrahams, I. (2004) Study on the role of 5-fluorouracil in the polymerization of butylcyanoacrylate during the formation of nanoparticles. J Drug Target 12, 49-56.
Smith, G.P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315-7.
Steege, D.A. (2000) Emerging features of mRNA decay in bacteria. Rna 6, 1079-90.
Strand, S.P., Danielsen, S., Christensen, B.E. and Varum, K.M. (2005) Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes. Biomacromolecules 6, 3357-66.
Suh, H., Jeong, B., Liu, F. and Kim, S.W. (1998) Cellular uptake study of biodegradable nanoparticles in vascular smooth muscle cells. Pharm Res 15, 1495-8.
Tiefenauer, L.X., Kuhne, G. and Andres, R.Y. (1993) Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjug Chem 4, 347-52.
Tkachenko, A.G., Xie, H., Coleman, D., Glomm, W., Ryan, J., Anderson, M.F., Franzen, S. and Feldheim, D.L. (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125, 4700-1.
van Wezenbeek, P.M., Hulsebos, T.J. and Schoenmakers, J.G. (1980) Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11, 129-48.
Wang, Y.X., Hussain, S.M. and Krestin, G.P. (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11, 2319-31.
Weissleder, R., Heautot, J.F., Schaffer, B.K., Nossiff, N., Papisov, M.I., Bogdanov, A., Jr. and Brady, T.J. (1994) MR lymphography: study of a high-efficiency lymphotrophic agent. Radiology 191, 225-30.
Wong, H.L., Bendayan, R., Rauth, A.M., Xue, H.Y., Babakhanian, K. and Wu, X.Y. (2006) A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 317, 1372-81.
Yang, Y., Wang, H. and Erie, D.A. (2003) Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy. Methods 29, 175-87.
Yu, X., Song, S.K., Chen, J., Scott, M.J., Fuhrhop, R.J., Hall, C.S., Gaffney, P.J., Wickline, S.A. and Lanza, G.M. (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44, 867-72.
Yuan, F. (1998) Transvascular drug delivery in solid tumors. Semin Radiat Oncol 8, 164-75.
Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D.A., Torchilin, V.P. and Jain, R.K. (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55, 3752-6.