簡易檢索 / 詳目顯示

研究生: 曾秀華
Tseng, Hsiu-Hua
論文名稱: 利用一個生成元的偽循環碼探討(n,1,ν)卷積碼
Explore (n,1,ν) Convolutional Codes by 1-Generator Quasi-cyclic Codes
指導教授: 柯文峰
Ke, Wen-Fong
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 42
中文關鍵詞: 卷積碼里德-所羅門碼最小自由距離
外文關鍵詞: convolutional codes, Reed-Solomon codes, minimum free distance.
相關次數: 點閱:145下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用準循環碼 (quasi-cyclic codes)和卷積碼 (convolutional codes)能具有相同最小(自由)距離,與里德-所羅門碼 (Reed-Solomon codes)可以設計最小距離的特性,構造出不易發生解碼錯誤的卷積碼 (convolutional codes)。

    According to that quasi-cyclic codes and convolutional codes can have the same minimum (free) distance, and that Reed-Solomon codes can be designed minimum distance, we can construct convolutional codes with lower error probability of decoding.

    Contents 1 Introduction 3 1.1 Background of coding theory . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 The difference codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Research motives and purposes . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background 4 2.1 Convolutional codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Viterbi decoding algorithm . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Decoding error probability on a binary symmetric channel (BSC). . 15 2.2 Block codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Cyclic codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1.1 BCH codes . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1.2 Reed-Solomon codes . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Quasi-cyclic codes (QC codes) . . . . . . . . . . . . . . . . . . . . . 21 3 A link between convolutional codes and quasi-cyclic codes 24 4 Construct 1-generator quasi-cyclic codes 26 5 A lower bound of the minimum distances of quasi-cyclic codes which are associated with Reed-Solomon codes 37 6 Conclusion 39 7 Appendix 41 7.1 GAP : find wight enumerations of quasi-cyclic codes . . . . . . . . . . . . . 41 7.1.1 Generator polynomial ˜ g(x) = (x 14 + x 13 + x 11 + x 7 + 1,0,0). . . . . 41 7.1.2 Generator polynomial ˜ g(x) = (x 14 +x 13 +x 12 +x 11 +x 10 +x 8 +x 6 +x 5 + x 4 +x 2 ,x 13 +x 12 +x 10 +x 4 +x 3 +x+1,x 13 +x 12 +x 10 +x 5 +x 4 +x 3 +x 2 ). 41 7.2 The cyclotomic cosets modulo 7, 73 and 273 . . . . . . . . . . . . . . . . . 42

    [1] R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group
    Codes,” Inform. Control, 3: 68-79, March 1960.
    [2] P. Elias, “Coding for Noisy Channels,” IRS Conv. Rec., p.4:37-47,1955.
    [3] M. Esmaeli, T.A. Gulliver, N. P. Secord, and S. A. Mahmoud, “A link betwwen
    quasi-cyclic codes and convolutional codes,” IEEE Trans. Inform. Theory, vol. 44,
    pp.431-435, Jan. 1998.
    [4] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell Syst. Tech. J.,
    29: 147-60, April 1950.
    [5] A. Hocquenghem, “Codes corecteurs d’erreurs,” Chiffres, 2: 147-56, 1959.
    [6] R. Johannesson and K.S. Zigangirov, Fundamental of convolutional coding, IEEE
    Press, Piscataway, NJ, 1999.
    [7] Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applicati-
    ons, Cambridge University Press, 1994.
    [8] K. Lally and P. Fitzpatrick, “Algebraic structure of quasi-cyclic codes,” Discr. Appl.
    Math., vol. 111, p.157-175, 2001.
    [9] S. Ling and P. Sole’, ”On the algebraic structure of quasi-cyclic codes I: finite fields,”
    IEEE Trans. Inform. Thery, vol.47, pp.2751-2760, Nov. 2001.
    [10] Shu Lin, Daniel J. Costello, Jr., Error Control Coding: Fundamental and Application.
    Pearson, 2004.
    [11] J. L. Messey, Threshold Decoding. MIT Press, Cambridge, 1963.
    [12] J. L. Massey and M. K. Sain, “Inverses of linear sequential circuits,” IEEE Trans.
    Comput., C-17:330-337, 1968.
    [13] F. J. MacWilliams and N. J. A Sloane, The Theory Of Error Correcting Codes,
    North-Holland Mathematical Library; 16, 1996.
    [14] E. Prange, “Cyclic Error-Correcting Codes in Two Symols,” AFCRC-TN-57, 103, Air
    Force Camridge Research Center, Cambridge, Mass., September 1957.
    [15] I. S. Reed and G. Solomon, “Polynomial codes over Certain Finit Fields.” J. Soc. Ind.
    Appl. Math., 8:300-304, June 1960.
    [16] C. E. Shannon, ”A Mathematical Theory of Communication,” Bell Syst. Tech. J.,
    pp.379-423(Part1), July 1948.
    [17] Ge’rald E. Se’guin, “A class of 1-generator quasi-cyclic codes,” IEEE Trans. Inform.
    Theory, vol. 50, No.8, Aug. 2004.
    [18] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Opti-
    mum Decoding Algorithm,” IEEE Tran. Inform. Theory, IT-13:260-69, April 1967.
    [19] A. J. Viterbi,”Convolutional codes and their performance in a communication sys-
    tems,” IEEE Trans. Commun. Technol., COM-19:751-772, 1971.
    [20] J. M. Wozencraft and B. Reiffen, Sequential Decoding, MIT Press, Cambridge,1961.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE