| 研究生: |
曾秀華 Tseng, Hsiu-Hua |
|---|---|
| 論文名稱: |
利用一個生成元的偽循環碼探討(n,1,ν)卷積碼 Explore (n,1,ν) Convolutional Codes by 1-Generator Quasi-cyclic Codes |
| 指導教授: |
柯文峰
Ke, Wen-Fong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 卷積碼 、里德-所羅門碼 、最小自由距離 |
| 外文關鍵詞: | convolutional codes, Reed-Solomon codes, minimum free distance. |
| 相關次數: | 點閱:145 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用準循環碼 (quasi-cyclic codes)和卷積碼 (convolutional codes)能具有相同最小(自由)距離,與里德-所羅門碼 (Reed-Solomon codes)可以設計最小距離的特性,構造出不易發生解碼錯誤的卷積碼 (convolutional codes)。
According to that quasi-cyclic codes and convolutional codes can have the same minimum (free) distance, and that Reed-Solomon codes can be designed minimum distance, we can construct convolutional codes with lower error probability of decoding.
[1] R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group
Codes,” Inform. Control, 3: 68-79, March 1960.
[2] P. Elias, “Coding for Noisy Channels,” IRS Conv. Rec., p.4:37-47,1955.
[3] M. Esmaeli, T.A. Gulliver, N. P. Secord, and S. A. Mahmoud, “A link betwwen
quasi-cyclic codes and convolutional codes,” IEEE Trans. Inform. Theory, vol. 44,
pp.431-435, Jan. 1998.
[4] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell Syst. Tech. J.,
29: 147-60, April 1950.
[5] A. Hocquenghem, “Codes corecteurs d’erreurs,” Chiffres, 2: 147-56, 1959.
[6] R. Johannesson and K.S. Zigangirov, Fundamental of convolutional coding, IEEE
Press, Piscataway, NJ, 1999.
[7] Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applicati-
ons, Cambridge University Press, 1994.
[8] K. Lally and P. Fitzpatrick, “Algebraic structure of quasi-cyclic codes,” Discr. Appl.
Math., vol. 111, p.157-175, 2001.
[9] S. Ling and P. Sole’, ”On the algebraic structure of quasi-cyclic codes I: finite fields,”
IEEE Trans. Inform. Thery, vol.47, pp.2751-2760, Nov. 2001.
[10] Shu Lin, Daniel J. Costello, Jr., Error Control Coding: Fundamental and Application.
Pearson, 2004.
[11] J. L. Messey, Threshold Decoding. MIT Press, Cambridge, 1963.
[12] J. L. Massey and M. K. Sain, “Inverses of linear sequential circuits,” IEEE Trans.
Comput., C-17:330-337, 1968.
[13] F. J. MacWilliams and N. J. A Sloane, The Theory Of Error Correcting Codes,
North-Holland Mathematical Library; 16, 1996.
[14] E. Prange, “Cyclic Error-Correcting Codes in Two Symols,” AFCRC-TN-57, 103, Air
Force Camridge Research Center, Cambridge, Mass., September 1957.
[15] I. S. Reed and G. Solomon, “Polynomial codes over Certain Finit Fields.” J. Soc. Ind.
Appl. Math., 8:300-304, June 1960.
[16] C. E. Shannon, ”A Mathematical Theory of Communication,” Bell Syst. Tech. J.,
pp.379-423(Part1), July 1948.
[17] Ge’rald E. Se’guin, “A class of 1-generator quasi-cyclic codes,” IEEE Trans. Inform.
Theory, vol. 50, No.8, Aug. 2004.
[18] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Opti-
mum Decoding Algorithm,” IEEE Tran. Inform. Theory, IT-13:260-69, April 1967.
[19] A. J. Viterbi,”Convolutional codes and their performance in a communication sys-
tems,” IEEE Trans. Commun. Technol., COM-19:751-772, 1971.
[20] J. M. Wozencraft and B. Reiffen, Sequential Decoding, MIT Press, Cambridge,1961.