簡易檢索 / 詳目顯示

研究生: 吳彥勳
Wu, Yen-Hsun
論文名稱: 基地相織構及第二相分佈對ZA137鎂鋅鋁合金拉伸機械性質之影響
The Effects of Matrix Texture and Second Phase Distribution on the Tensile Properties of ZA137 Mg-Zn-Al Alloy
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 79
中文關鍵詞: 鎂鋅鋁合金拉伸性質織構準晶Q-Mg32(Al.Zn)49
外文關鍵詞: Mg-Zn-Al alloys, Tensile properties, Texture, Quasi-crystal Mg32(Al.Zn)49
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AZ系列鎂合金在高於100ºC溫度下,容易因γ-Mg17Al12於晶界固溶而衍生潛變問題。藉由提高鋅含量,使鋅/鋁比值相對鋁含量達特定範圍的ZA系列鎂合金,會抑制γ相生成,產生固溶溫度較高的Mg32(Al.Zn)49、MgZn相,因此具有較佳的高溫抗潛變性。本研究以具α-Mg、準晶Q-Mg32(Al.Zn)49 及少量Al¬-Mn相之Mg-13Zn-7Al合金擠型材(ZA137-F),沿其平行、夾45º、垂直擠型方向進行拉伸試驗,並利用退火(O)與過固溶(OT4)熱處理改變基地相織構及第二相分佈,以釐清第二相分佈對拉伸性質之影響。
    實驗結果顯示:改變拉伸方向對ZA137-F之降伏強度(YS)、抗拉強度(UTS)、均勻延伸率(UE)三者差異影響不大,而拉伸方向為平行擠型方向時,有較佳總延伸率(TE)約15%。ZA137-O之UTS與YS略降,而平行擠型方向之TE增加到約22%,延性明顯提升。ZA137-T4之TE僅約2%,延性明顯劣化。
    而ZA137之高強度是由分散的硬質Q相與粒徑小的α-Mg所貢獻;OT4材強度不佳,是由於集中的φ-Mg5Zn2Al2+Q相與α-Mg粒徑較大。F材與O材基地相之basal plane平行ND方向所佔的比例僅約1/4,因此F材與O材具有相當程度的延伸率;TD面與ED面的優選方位相似,故改變拉伸方向對F材之YS、UTS、UE三者差異影響並不大。由破斷次表面之觀察發現裂縫皆始於硬脆的Q相,裂縫生成後沿著Q相分佈互相連結,最後導致材料破裂。因此O材可能因Q相分散較均勻,且基地相釋放殘留應力,有助於阻止裂縫傳播,使得明顯延性提升;而OT4材之φ+Q相集中於晶界處,導致延性明顯劣化。

    AZ-series Mg-Al-Zn alloys may encounter creep problems resulted from the γ-Mg17Al12 dissolution at grain boundaries for higher than 100ºC. ZA-series Mg-Zn-Al alloys with high Zn content and certain Zn/Al ratio to Al contents can have better creep resistance at higher temperatures because the Mg32(Al.Zn)49 or MgZn compounds with higher dissolution resistance can inhibit the formation of γ phase. The extrusion ZA137-F Mg-Zn-Al alloy, which is consist of α-Mg, quasi-crystal Q-Mg32(Al.Zn)49 phase and a few Al-Mn phase, is used to study the effect of matrix texture, Q phase distribution and post-heat treatments on the tensile properties with parallel, 45º and perpendicular to the extrusion direction (ED).
    Experimental results show that less effect on the variation of the yield stress (YS), the ultimate tensile stress (UTS) and the uniform elongation (UE) of ZA137-F with varying tensile directions, but the total elongation (TE) is about 15% better for tensile tests parallel to ED. The tensile strength of ZA137-O is slightly reduced, but the TE is raised to about 22% in the parallel ED condition. The TE of ZA137-T4 is decreased to only 2%, which shoes significant low ductility.
    The high strength is due to the dispersed Q phase and the small particle size of α-Mg. ZA137-OT4 has low strength because of the concentration of the φ-Mg5Zn2Al2+Q phase and the bigger particle size of α-Mg. About 1/4 the basal plane are parallel to the ND in ZA137-F and ZA137-O. Therefore, they have substantial elongation; The preferred orientations are similar in TD surface and ED surface. Therefore, it has substantial elongation and less difference to the UTS, YS and UE for varying tensile directions. Fracture sub-surfaces observations reveal that initial cracks occurred within Q phase. Failures are resulted from cracks propagation and interlinkage along Q phase. Therefore, the elongation of ZA137-O is increased obviously because of the uniform distribution of Q phase and releasing the residual stress in the matrix. After the OT4 treatment, the elongation has been deteriorated due to the concentration of the φ+Q phase at the grain boundary.

    中文摘要 I Abstract II 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 第二章 文獻回顧 2 2-1 鎂合金分類記號之規範及意義 2 2-2 ZA系列鎂合金之元素添加效應 2 2-2-1 鋁(Al) 2 2-2-2 鋅(Zn) 3 2-3 準晶之結構與機械性質 3 2-4 鎂合金室溫變形機制 4 2-4-1 滑移系統 4 2-4-2 形變雙晶 5 2-4-3 <c+a>差排 5 2-5 ZA系列鎂合金之研究現況 6 第三章 實驗方法 18 3-1 研究架構 18 3-2 材料製備 18 3-3 微觀組織觀察與Q相面積率計算 18 3-4 DSC 熱分析 19 3-5 硬度量測與奈米壓痕測試 19 3-6 X-ray 繞射分析 20 3-7 拉伸試驗與破斷面cleavage特徵面積率計算 20 第四章 實驗結果 25 4-1 微觀組織分析 25 4-2 DSC 熱分析 26 4-3 硬度量測 26 4-4 織構特性 27 4-5 拉伸機械性質試驗 28 第五章 討論 47 5-1 熱處理條件對第二相分佈與基地相織構之影響 47 5-2 基地相之晶粒徑大小對拉伸性質之影響 48 5-3 基地相織構特性對拉伸性質之影響 49 5-4 第二相分佈對拉伸性質之影響 50 5-4-1 第二相分佈對F材拉伸性質之影響 51 5-4-2 第二相分佈對O材拉伸性質之影響 51 5-4-3 第二相分佈對OT4材拉伸性質之影響 52 5-5 拉伸破壞機制 53 第六章 結論 71 參考文獻 72 誌謝 77 自述 79

    1. 陳錦修,『鎂合金在汽車工業之應用』,工業材料雜誌186期,民國91年6月,148-152頁。
    2. P. Humble, “Towards a creep resistant magnesium alloy”, Mater. Forum, 1997, 21, pp.45-46.
    3. Y. Kojima, T. Aizawa and S. Kamado, “Magnesium Alloys 2000”, Trans. Tech. Publications, 2000, pp.73-84.
    4. M. Pekguleryuz and A. Kaya, “Creep resistant magnesium alloys for powertrain applications”, Advanced Eng. Mater., Vol.5, No.12, 2003, pp.866-878.
    5. W. Xiao, S. Jia, J. wang, Y. Wu and L. Wang, “Effects of cerium on the microstructure and mechanical properties of Mg-20Zn-8Al alloy”, Mater. Sci. Eng., A474, 2008, pp.317-322.
    6. J. Zhang, Z. S. Li, Z. X. Guo and F. S. Pan, “Solidification microstructural constituent and its crystallographic morphology of permanent-mould-cast Mg-Zn-Al alloys”, Trans. Nonferrous Met. Soc., China 16, 2006, pp.452-458.
    7. J. Zhang, Z. X. Guo, F. S. Pan, Z. Li and X. Luo, “Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys”, Mater. Sci. Eng. A456, 2007, pp.43-51.
    8. M. M. Avedesian and H. Baker, ASM Specialty Handbook, “Magnesium and Magnesium Alloys”, 1999, pp.13-43.

    9. 蔡幸甫,『鎂合金產業技術及市場發展趨勢專題調查』,民國90年10月,2-5頁。
    10. M. Avedesian and H. Baker, “ASM Metals Handbook-Metallography, Structures and Phase Diagrams”, Vol.8, 1973, pp.398.
    11. M. M. Avedesian and H. Baker, “Magnesium and Magnesium Alloys”, ASM Int., 1999, pp.13-21.
    12. G. S. Foerster, “Proceeding of the IMA 33rd Annual Meeting”, Montreal, Quebec, Canada, May 23–25, 1976, pp.35–39.
    13. M. M. Avedesian and Noranda Magnesium Inc., “ASM Specialty Handbook-Magnesium and Magnesium Alloys”, Mater. Information Society, 1999, pp.14-15.
    14. D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry”, Phys. Rev. Lett. 53, 1984, pp.1951.
    15. D. Levine and P. J. Steinhardt, “Quasicrystals. I. definition and structure”, Phys. Rev. B34, 1986, pp.596.
    16. K. Niizeki, “Mathematical and general”, Phys. A22, 1989, pp.205-218.
    17. 王仁卉、胡承正、桂嘉年著,『準晶物理學』,科學出版社,2004,1-19頁。
    18. T. Rajasekharan, D. Akhtar, R. Gopalan and K. Muraleedharan, “The quasi-crystalline phase in Mg-Al-Zn system”, Nature Vol. 322, 1986, pp.528-530.
    19. D. Levine, T. C. Lubensky, S. Ostlund, S. Ramaswamy and P. J. Steinhardt, “Elasticity and dislocations in pentagonal and icosahedral quasicrystals”, Phys. Rev. Lett. 54, 1985, pp.1520.
    20. J. E. S. Socolar, T. C. Lubensky and P. J. Steinhardt, “Phonons, phasons, and dislocations in quasicrystals”, Phys. Rev. B34, 1986, pp.3345.
    21. S. Takeuchi, H. Iwanaga and T. Shibuya, Jpn. J. Appl. Phys. 30, 1991, pp.361.
    22. U. Koester, W. Liu, H. Liebertz and M. Michel, J. Non-Cryst. Solids 153/154, 1993, pp.446.
    23. K. Edagawa, T. Suzuki, S. Takeuchi and T. Fujiwara, “Proceedings of 6th International Conference on Quasicrystals”, World Scientific, Singapore, 1998, pp.517.
    24. 昌山正孝著、賴狄陽譯,『非鐵金屬材料』,復漢出版社,1993年1月,174頁。
    25. C. R. Brooks, “Heat Treatment, Structure and Properties of Nonferrous Alloys”, ASM., 1982, pp.59-69.
    26. T. Obara, H. Yoshinga and S. Morozumi, “﹛112(___)2﹜<1(___)1(___)23> slip system in magsium”, Acta Metall., Vol.21, 1973, pp.845-853.
    27. J. F. Stohr and J. P. Poirier, “Electron microscope study of pyramidal slip﹛112(___)2﹜<1(___)1(___)23> in magnesium”, Phil. Mag. , vol. 25, 1972, pp.1313-1329.
    28. S. Ando and H. Tonda, “Non-basal slip in magnesium-lithium alloy single crystals”, Mater. Trans. JIM, vol. 41, 2000, pp.1188-1191.
    29. M. H. YOO, J. R. MORRIS, K. M. HO and S. R. AGNEW, “Nonbasal deformation modes of hcp metals and alloys: role of dislocation source and mobility”, Metall. Mater. Trans., Vol.33A, 2002, pp.813-822.
    30. S. R. Agnew, J. A. Horton and M. H. Yoo, “Transmission electron microscopy investigation of <c+a> dislocation in Mg and α-solid solution Mg-Li alloys”, Metall. Mater. Trans., Vol.33A, 2002, pp.851-858.
    31. S. K. Guan, C. X. Zhang, L. G. Wang, L. H. Wu, P. L. Chen and Y. L. Tang, “Phase selection of ternary intermetallic compounds during solidification of high zinc magnesium alloy”, Trans. Nonferrous Met. Soc., China 18, 2008, pp.593-597.
    32. M. B. Yang, F. S. Pan, R. J. Cheng and J. Shen, “Effects of holding temperature and time on semi-solid isothermal heat-treated microstructure of ZA84 magesium alloy”, Trans. Nonferrous Met. Soc., China 18, 2008, pp.566-572.
    33. N. Balasubremani, U. T. S. Pillai and B. C. Pai, “Optimization of heat treatment parameters in ZA84 magnesium alloy”, Journal of Alloys and Compounds. 457, 2008, pp.118-123.
    34. R. Banerjee, R. T. Savalia, E. G. Baburaj, G. K. Dey and U. D. Kulkarni, “Microstructural studies on rapidly solidified Mg32(AlxZn1-x)49 potentially quasicrystal forming alloys”, Mater. Sci. Eng. A165, 1993, pp.149-156.
    35. C. S. Barrett and T. B. Massalski, “Structure of Metals”, Mcgraw-Hill Inc., 1980, pp.203-205.
    36. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki and K. Maruyama, “Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523K”, Mater. Trans. 44, 2003, pp.445.
    37. H. Somekawa, H. S. Kim, A. Singh and T. Mukai, “Fracture toughness in direct extruded Mg-Al-Zn alloys”, J. Mater. Res. 22, 2007, pp.2598.
    38. W. D. Callister, “Fundamentals of Materials Science and Engineering”, John Wiley and Sons Inc., 2005, pp.251-252.
    39. W. D. Callister, “Fundamentals of Materials Science and Engineering”, John Wiley and Sons Inc., 2005, pp.243-245.
    40. R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles 3rd edition”, PWS Publishing Company, pp.746.

    下載圖示 校內:2013-08-03公開
    校外:2014-08-03公開
    QR CODE