簡易檢索 / 詳目顯示

研究生: 林勉豪
Lin, Mien-Hao
論文名稱: 數值方法在聚焦分析上的應用
An Application for Numerical Method to Focusing Analysis
指導教授: 沈士育
Shen, Shih-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 數值分析聚焦分析最小平方法非球面鏡複合透鏡
外文關鍵詞: Numerical Analysis, Focusing Analysis, Least-square Method, Aspherical, Compound Lens
相關次數: 點閱:69下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光系統的聚焦品質一直是光學發展上需要改善的對象,以往傳統在分析聚焦品質大部分是使用光學設計軟體,藉由參數的設定進行最佳化,由調頻轉換函數(MTF)圖決定聚焦的好壞。本論文提出不同的方法,分析當平行光軸光線經過非球面鏡若聚焦於一點時,這面透鏡會滿足兩條常微分方程式,並使用數值分析的Runge Kutta 四階法求數值解,造出完美透鏡。接著對傾斜角度光線入射透鏡後其折射線與光軸的夾角進行分析,我們知道聚焦位置與入射高度有關,因此這個角度可用 的多項式表示,將已知的聚焦位置與入射高度寫成線性方程組,利用最小平方法找出此多項式各項係數,而一面透鏡的特性將由這些係數唯一決定,便可利用這些係數進行複合透鏡的聚焦分析,最後提出複合透鏡折射線與光軸夾角的多項式如何由這些係數決定,因此即使不使用軟體分析兩面透鏡複合後的聚焦品質,只要知道該面透鏡的係數,便可知道聚焦的好壞。

    In optics, researchers devote to improve focusing quality in lens system.
    Traditionally, the optical program is used to analysis focusing quality. Researchers usually optimize the quality by changing the parameters used in the program, like refracted angles and thickness of lens, and they determined which sets of parameters are better by frequency modulation transfer function (MTF).
    This thesis proposes a different method to analysis. The lens will satisfy two Ordinary Differential Equations (ODE) when parallels lights pass through aspherical lens and focus in a spot. Our purpose is to find out the numerical solutions with Runge Kutta fourth-order method and use these solutions to establish perfect lens.
    Then, we pay attention to angles between refracted ray and optical axis when the ray is not parallel to the axis. Because focusing position is related to the incident height, these angles could be represented by polynomials which variables are the heights. Using focusing positions and the incident heights to set linear equations and using the least squares method to find out each coefficient. The specialty of the lens will be determined only by these coefficients. So we use these coefficients to analysis focusing quality of compound lens in advance.
    Last part in this thesis, we concentrate on how to use these coefficients to determine polynomials of angles in compound lens system when refracted ray is not parallel to the axis. Therefore, as long as we get the coefficients the lens, we could realize the focusing quality of compound lens by these coefficients even though we do not use optical program.

    摘要 II ABSTRACT III 致謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1前言 1 1-2鏡組發展沿革 1 1-2-1照相技術的發展 2 1-2-2色散(chromatism)、像差(aberration)基本介紹 3 1-2-3複合鏡頭鏡片介紹 3 1-3研究動機 9 1-4論文架構 9 第二章 幾何光學 10 2-1理論及其性質 10 2-1-1高斯光學 10 2-1-2反射定律、折射定律、全反射現象 11 2-1-3斯涅耳定律 13 2-2賽德爾(SEIDEL)像差 14 2-2-1球差(Spherical Aberration) 15 2-2-2彗差(Coma) 15 2-2-3像散效應(Astigmatism) 17 2-2-4場曲(Curvature of Field) 18 2-2-5畸變(Distortion) 18 2-3傳統透鏡分析 19 2-3-1公式 19 2-3-2光學設計軟體 21 2-3-3參數調校 23 2-3-4非球面鏡的應用 23 第三章 近軸光線追跡 25 3-1光束平行主軸入射 25 3-1-1平凸球透鏡 25 3-1-2雙凸球透鏡 26 3-2光束傾斜角度入射 28 3-2-1平凸球透鏡 28 3-2-2雙凸球透鏡 29 3-2-3複合透鏡 32 第四章 透鏡數值設計 34 4-1常微分方程(ODE) 34 4-2 RUNGE KUTTA 四階 35 4-3結果比較 37 4-4應用 39 第五章 估計折射角多項式 40 5-1近軸光學完美 角計算 41 5-2 展開後 的二次項為零 43 5-3分析 的一次、二次、三次項係數 44 5-4分析複合透鏡一次、二次、三次項係數 54 第六章 結論 58 REFERENCE 59

    [1] William H.Price, The Photographic Lens, Scientific American, 1976.
    [2] R. R. Shannon, The Art and Science of Optical Design, Cambridge University, Cambridge, 1997.
    [3] Joseph M. Geary, Introduction to Lens Design, Richmond, Va.: Willmann-Bell, 2002.
    [4] Sidney F. Ray, Applied Photographic Optics, Focal, 2002.
    [5] Walter Mandler, Design of basic double Gauss Lenses, Proc. of SPIE Vol.0237, International Lens Design.
    [6] Gregory Hallock Smith, Practical Computer-Aided Lens Design, Richmond, Va.: Willmann-Bell, 1998.
    [7] Watler Woltche, Optical system design with reference to the evolution of the double Gauss, Proc. of SPIE Vol. 0237, International Lens Design.
    [8] Eugene Hecht, Optics 2ndedition, Addison Wesley, 2002.
    [9] Warren J. Smith, Modern Optical Engineering 3rdedition, SPIE, McGraw-Hill, 2000.
    [10] Warren J. Smith, Genesee Optics Software, Inc. Modern Lens Design, McGraw-Hill, 1992.
    [11] Rudolf Kingslake, A History of the Photographic Lens, Academic, 1989.
    [12] H. W. Lee, The Taylor-Hobson F/2 Anastigmat, Transactions of the Optical Society, 1924.
    [13] Longhurst R.S., Geometrical and Physical Optics, Longmans Green, 1964.
    [14] Virendra N. Mahajan, Optical Imaging and Aberrations(part1 ray geometrical optics), SPIE-International Society for Optical Engine, 1998.
    [15] 張弘, 幾何光學, 東華書局, 1993
    [16] 易明, 現代幾何光學, 凡異出版社, 1992.
    [17] http://commons.wikimedia.org/wiki/File:Astigmatism.svg.
    [18] Max Born and Emil Wolf, Principles of Optics, 7thedition, Cambridge University, 1999.
    [19] http://www.telescope-optics.net/curvature.html.
    [20] http://www.telescope-optics.net/distortion.html.
    [21] 鄭依凱, 非球面透鏡的最佳化與分析, 國立成功大學物理研究所碩士論文.
    [22] 賴育菘, 手機鏡頭設計, 國立清華大學光電所碩士論文.
    [23] 黃國政、王必昌、廖俍境、郭慶祥, 非球面鏡之拋光與檢測技術,第23卷第3期, 民國90年12月.
    [24] David Kincaid and Ward Cheney, Numerical Analysis: Mathematics of Scientific Computing, Brooks/Cole, 2002.
    [25] 胡凱揚, 聚焦透鏡的誤差模擬, 國立成功大學應用數學所碩士論文.
    [26] Stephen H. Friedberg and Arnold J. Insel and Lawrence E. Spence, Linear Algebra, 4thedition, Prentice Hall, 1997.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE