簡易檢索 / 詳目顯示

研究生: 徐竹君
Hsu, Chu-Chun
論文名稱: 探討食品腸道大腸桿菌蛋白體對思覺失調症的抗體組影響
Effect of foodborne E.coli proteome on the antibodyome of schizophrenia patients
指導教授: 陳健生
Chen, Chen-sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 38
中文關鍵詞: 思覺失調症蛋白質晶片檢測免疫球蛋白
外文關鍵詞: schizophrenia, protein microarray, diagnostics, immunoglobulin
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 思覺失調症是一種複雜且嚴重的精神疾病,他們很難區分真實事物和虛構事物。而許多文獻指出發病年齡是思覺失調症的重要特徵,它可以分為早發型思覺失調症(EOS)和晚發型思覺失調症(AOS)。除此之外,菸酒習慣亦被認為與思覺失調症相關。大多數醫生使用《精神障礙診斷和統計手冊-5》(DSM-5)作為診斷和諮詢基礎。然而,目前沒有實驗室的測試可幫助診斷思覺失調症。近年來,蛋白質晶片已成為用於高通量抗體組的研究工具,並已被用於發現多種不同疾病的生物標記,但到目前為止,尚無針對精神分裂症的抗體組分析的研究。由於血漿中高濃度的抗體易於被檢測,是理想的生物標記指標。在這項研究中,我們將使用包含約4,300種大腸桿菌蛋白的大腸桿菌蛋白質晶片,透過實驗分析抗體組的差別。在做實驗時我們將血漿稀釋至4000倍將之與載玻片上的蛋白質抗原結合,並在蛋白質晶片上結合螢光標記的人體免疫球蛋白M的抗體(0.33 µ/ ml)和螢光標記的人體免疫球蛋白G的抗體(0.25 µ / ml),使晶片上提供結合抗體的訊號。分析時將晶片上4,300個抗原標記做T檢測並使用隨機抽樣法重複十次,最後用支援向量機評估思覺失調症患者(早發型思覺失調症/ 晚發型思覺失調症)與正常人之間的生物標記的準確度。結果顯示,早發型思覺失調症與正常組的免疫球蛋白G、免疫球蛋白M還有晚發型與正常的免疫球蛋白M組,在訓練組與驗證組中,AUC值都沒有達到0.7,剩餘的組別其AUC皆有達到0.7。AUC達到0.7的組別,會進一步透過目測晶片影像圖。其結果顯示,僅晚發型思覺失調症與正常的免疫球蛋白G組別中groL, pldA, yjjU, livG, ftsE蛋白質影像準確度達0.7,將此5個蛋白質作排列組合並用支援向量機計算,我們發現yjjU, livG, ftsE可得到最佳組合,其分辨正確率可達0.8。在可區分晚發型思覺失調症與正常組的蛋白質中,蛋白質皆呈正向調節於晚發型思覺失調症。其富集分析結果顯示,ATP酶與其分子功能相關;油脂的分解代謝則是與生物程序相關;ABC轉運蛋白與蛋白質的結構域與細胞組成有高度相關。在三個最佳組合蛋白質中,livG與ftsE這兩個蛋白也具有ABC轉運蛋白相關結構域。此外,為了要評估菸酒習慣是否會影響思覺失調症的檢測,我們對提供樣本人員做問卷調查,之後利用我們找到的yjjU, livG, ftsE這三個蛋白質以支援向量機做分類,最後結果呈現其抽菸的診斷準確度為0.71;喝酒診斷準確度為0.79。

    Schizophrenia is a complicated and serious mental illness. Age of onset is an important feature of schizophrenia and it can differentiate into early-onset schizophrenia (EOS) and adult-onset schizophrenia (AOS). Alcohol drinking and smoking also consider related to schizophrenia. Physians use the Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) for diagnosis. There are no lab tests to help diagnose schizophrenia. In recent years, protein microarray has become a useful tool for high-throughput antibodyome interaction studies, and have been applied to the biomarker discovery for several diseases. There is no research on antibodyome analysis for schizophrenia so far. Antibody in the plasma samples is an ideal biomarker due to its high concentration for easy detection. In this research, we used E.coli protein microarray containing ~ 4,300 E.coli genome wide proteins on a glass slide to analyze antibodyome with chip assays. Plasma samples were diluted into 4000 fold for binding with the proteins on the slide. Fluorescent labeled human anti-IgM antibody (0.33 µ/ml) and anti-IgG antibody (0.25 µ/ml) were probed simultaneously on the protein microarray to provide signals of the binding antibodies on the slide. For data analysis, we did 10 times random sampling and T-test for 4,300 proteins. SVM were used to evaluate the accuracy of the proteins that differentiate between schizophrenia patients and normal people. EOS vs NC comparison in both IgG and IgM as well as AOS vs EOS comparison in IgG were screened out because their AUC did not reach 0.7 in both training and validation set. For the rest comparisons that AUC reach 0.7, we did the eyeballing to the images for the proteins that differentiate between each comparison to count the accuracy after analysis. Only groL, pldA, yjjU, livG, ftsE for classifying IgGs in AOS vs NC group achieved accuracy of 0.7. Further we found protein yjjU, livG and ftsE can form the best combination panel to classify IgG in AOS vs NC with accuracy of 0.8 from the five proteins. The distinguished protein between AOS and normal people are up-regulated in AOS. The enrichment analysis for the proteins that differentiate between AOS and NC shows that in the molecular function part it is related to ATPase. In the biological process the lipid catabolic process is enriched. It is also highly related to ABC transporter in the protein domain and cellular component. In the best combination panel to classify IgG in AOS vs NC, two out of three proteins (livG and ftsE) also have the ABC transporter related domains. To evaluate the diagnosis accuracy of the best combination panel in smoking or alcohol drinking patients, we collected the questionnaires and did the SVM to classify the samples. In smoking group, the accuracy is 0.71 and is 0.79 in drinking group.

    Chinese Abstract…………………………………………………………….………………I Abstract……………………………………………………………………………………III Acknowledgement…………………………...……………………………………….….…V Chapter 1 1-1 Research background……...…………………………………………………………1 Chapter 2 Methods and Materials 2-1 Sample collection………………………………………………………………….....4 2-2 Fabrication of the E.coli proteome chips……………………………………………...5 2-3 Profiling schizophrenia plasma samples antibodies using E.coli proteome chips.…………………………………………………………………………….…..6 2-4 Statistical analysis……………………………………………………………………6 2-5 Functional enrichment Analysis of the proteins that differentiate IgGs between   AOS and NC………………………………………………………………………...7 2-6 Accuracy evaluation of the best combination panel in alcohol drinking and   smoking patients………………………………………………………………….....7 Chapter 3 Results 3-1 Research framework……………………………………………………………….....8 3-2 Proteins that differentiate between schizophrenia patients and normal control…….....9 3-3 Enrichment of proteins that differentiate IgGs between AOS and NC………………19 3-4 The accuracy of the best combination panel on smoking and drinking people………21 3-5 Conclusion……………….…...…………………………………………………… .24 Reference...……………………………………………………………………...….……...25 Supplementary information………………………………………………………………..29

    Aleman, A., Kahn, R. S., & Selten, J. P. (2003). Sex differences in the risk of schizophrenia: evidence from meta-analysis. Archives of general psychiatry, 60(6), 565-571.
    Benson SRS, Young S-EML. 2013. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub.
    Bernstein, H. G., Hildebrandt, J., Dobrowolny, H., Steiner, J., Bogerts, B., & Pahnke, J. (2016). Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia: Circumscribed deficits in the habenula. Schizophrenia research, 177(1-3), 52-58.
    Buckley, P. F., Miller, B. J., Lehrer, D. S., & Castle, D. J. (2009). Psychiatric comorbidities and schizophrenia. Schizophrenia bulletin, 35(2), 383-402.
    Chen, C. S., Korobkova, E., Chen, H., Zhu, J., Jian, X., Tao, S. C., ... & Zhu, H. (2008). A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nature methods, 5(1), 69-74.
    Chen, C. S., Sullivan, S., Anderson, T., Tan, A. C., Alex, P. J., Brant, S. R., ... & Wang, H. (2009). Identification of novel serological biomarkers for inflammatory bowel disease using Escherichia coli proteome chip. Molecular & Cellular Proteomics, 8(8), 1765-1776.
    Chen, P. C., Syu, G. D., Chung, K. H., Ho, Y. H., Chung, F. H., Chen, P. H., ... & Chen, C. S. (2015). Antibody profiling of bipolar disorder using Escherichia coli proteome microarrays. Molecular & Cellular Proteomics, 14(3), 510-518.
    de Klerk, O. L., Willemsen, A. T., Bosker, F. J., Bartels, A. L., Hendrikse, N. H., den Boer, J. A., & Dierckx, R. A. (2010). Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia:: A PET study with [11C] verapamil as a probe for P-glycoprotein function. Psychiatry Research: Neuroimaging, 183(2), 151-156.
    DeLisi, L. E. (1992). The significance of age of onset for schizophrenia. Schizophrenia bulletin, 18(2), 209-215.
    Frazier, J. A., Giuliano, A. J., Johnson, J. L., Yakutis, L., Youngstrom, E. A., Breiger, D., ... & Vitiello, B. (2012). Neurocognitive outcomes in the treatment of early-onset schizophrenia spectrum disorders study. Journal of the American Academy of Child & Adolescent Psychiatry, 51(5), 496-505.
    Gerding, L. B., Labbate, L. A., Measom, M. O., Santos, A. B., & Arana, G. W. (1999). Alcohol dependence and hospitalization in schizophrenia. Schizophrenia Research, 38(1), 71-75.
    Gochman, P., Miller, R., & Rapoport, J. L. (2011). Childhood-onset schizophrenia: the challenge of diagnosis. Current psychiatry reports, 13(5), 321.
    Häfner, H., an der Heiden, W., Behrens, S., Gattaz, W. F., Hambrecht, M., Löffler, W., ... & Stein, A. (1998). Causes and consequences of the gender difference in age at onset of schizophrenia. Schizophrenia bulletin, 24(1), 99-113.
    Hsu, T. Y., Lin, J. M., Nguyen, M. H. T., Chung, F. H., Tsai, C. C., Cheng, H. H., ... & Chen, C. S. (2018). Antigen analysis of pre-eclamptic plasma antibodies using Escherichia coli proteome chips. Molecular & Cellular Proteomics, 17(8), 1457-1469.
    Kendler, K. S., Lönn, S. L., Sundquist, J., & Sundquist, K. (2015). Smoking and schizophrenia in population cohorts of Swedish women and men: a prospective co-relative control study. American Journal of Psychiatry, 172(11), 1092-1100.
    Kuo, H. C., Huang, Y. H., Chung, F. H., Chen, P. C., Sung, T. C., Chen, Y. W., ... & Syu, G. D. (2018). Antibody profiling of Kawasaki Disease using Escherichia coli proteome microarrays. Molecular & Cellular Proteomics, 17(3), 472-481.
    Leonard, S., Mexal, S., & Freedman, R. (2007). Smoking, genetics and schizophrenia: evidence for self medication. Journal of dual diagnosis, 3(3-4), 43.
    LLerena, A., de la Rubia, A., Peñas-Lledó, E. M., Diaz, F. J., & de Leon, J. (2003). Schizophrenia and tobacco smoking in a Spanish psychiatric hospital. Schizophrenia research, 60(2-3), 313-317.
    Matloubi, H., Vodjgani, M., Nasehi, A. A., Niknam, M. H., Kazemnejad, A., Salehi, E., ... & Gheflati, Z. (2007). Decreased T cell response to mitogen and increased anti-cytoplasmic antibody in drug-free schizophrenic patients. Iranian Journal of Immunology, 4(1), 32-37.
    McGrath, J., Saha, S., Welham, J., El Saadi, O., MacCauley, C., & Chant, D. (2004). A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC medicine, 2(1), 13.
    Morais, F. B., Arantes, T. E. F. E., & Muccioli, C. (2019). Seroprevalence and manifestations of ocular toxoplasmosis in patients with schizophrenia. Ocular immunology and inflammation, 27(1), 134-137.
    Patel, K. R., Cherian, J., Gohil, K., & Atkinson, D. (2014). Schizophrenia: overview and treatment options. Pharmacy and Therapeutics, 39(9), 638.
    Sato, T., Bottlender, R., Schröter, A., & Möller, H. J. (2004). Psychopathology of early-onset versus late-onset schizophrenia revisited: an observation of 473 neuroleptic-naive patients before and after first-admission treatments. Schizophrenia research, 67(2-3), 175-183.
    Schoknecht, K., & Shalev, H. (2012). Blood–brain barrier dysfunction in brain diseases: Clinical experience. Epilepsia, 53, 7-13.
    Schott, K., Uhl, A., Batra, A., Bartels, M., Eusterschulte, B., & Buchkremer, G. (1996). Antinuclear antibodies in schizophrenia and major depressive disorder—a lasting puzzle. European psychiatry, 11(5), 263-267.
    Shalev, H., Serlin, Y., & Friedman, A. (2009). Breaching the blood-brain barrier as a gate to psychiatric disorder. Cardiovascular psychiatry and neurology, 2009.
    Shcherbakova, I., Neshkova, E., Dotsenko, V., Platonova, T., Shcherbakova, E., & Yarovaya, G. (1999). The possible role of plasma kallikrein–kinin system and leukocyte elastase in pathogenesis of schizophrenia. Immunopharmacology, 43(2-3), 273-279.
    Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44.
    Sikich, L., Frazier, J. A., McClellan, J., Findling, R. L., Vitiello, B., Ritz, L., ... & De Jong, S. (2008). Double-blind comparison of first-and second-generation antipsychotics in early-onset schizophrenia and schizo-affective disorder: findings from the treatment of early-onset schizophrenia spectrum disorders (TEOSS) study. American Journal of Psychiatry, 165(11), 1420-1431.
    Syu, G. D., Dunn, J., & Zhu, H. (2020). Developments and Applications of Functional Protein Microarrays. Molecular & Cellular Proteomics, 19(6), 916-927.
    Uranova, N. A., Zimina, I. S., Vikhreva, O. V., Krukov, N. O., Rachmanova, V. I., & Orlovskaya, D. D. (2010). Ultrastructural damage of capillaries in the neocortex in schizophrenia. The world journal of biological psychiatry, 11(3), 567-578.
    Weiser, M., Reichenberg, A., Grotto, I., Yasvitzky, R., Rabinowitz, J., Lubin, G., ... & Davidson, M. (2004). Higher rates of cigarette smoking in male adolescents before the onset of schizophrenia: a historical-prospective cohort study. American Journal of Psychiatry, 161(7), 1219-1223.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE