| 研究生: |
劉恬昕 Liu, Tian−Xin |
|---|---|
| 論文名稱: |
包含鐵鉑之金屬有機骨架奈米粒子應用於藥物傳輸和聲動力治療 FePt−incorporated Metal–Organic Framework Nanoparticles for Drug Delivery and Sonodynamic Therapy |
| 指導教授: |
陳登豪
Chen, Teng−Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 鐵鉑奈米粒子 、金屬有機骨架 、Pt(IV)前驅藥物 、聲動力 、化學動力療法 |
| 外文關鍵詞: | FePt, Metal−organic frameworks, Pt(IV) prodrug, Sonodynamic therapy, Chemodynamic therapy |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症是全球主要的死亡原因,採用多模式療法的奈米醫學的發展已顯示出在提高治療效果同時減少副作用方面的前景。與光動力療法相比,聲動力療法可提供更深的穿透深度。在此,我們設計了一種奈米藥物FePt@MIL−125−NH2−Pt(IV),用於協同化療、化學動力學和聲動力學治療。鐵鉑奈米粒子的鐵成分可以執行芬頓反應進行化學動力學治療,在腫瘤微環境中產生活性氧。鐵鉑奈米粒子的鉑成分可作為分解過氧化氫產生水和氧氣的催化劑。因為腫瘤微環境中高濃度的過氧化氫和缺氧環境會降低聲音動力療法的有效性。MIL−125−NH2是一種含有鈦的半導體金屬有機骨架,在超音波照射下可以產生分離的電子和電洞。然後電子可以將氧還原成單重態氧,而電洞可以將水氧化成羥基自由基。最後,金屬有機骨架的胺基可以透過醯胺鍵與化療藥物順鉑前驅藥物藥結合。這種整合旨在克服滲透深度的限制並改進多模式抗癌治療。FePt@MIL−125−NH2−Pt(IV)的粒徑為170 ± 5nm。FePt@MIL−125−NH2−Pt(IV)是半導體,根據紫外可見光光譜計算出能帶間隙為2.3 eV。鐵鉑奈米粒子的負載量為4.54 ± 0.72 wt%,順鉑前驅藥物的負載量為 4.70 ± 1.23 wt%。穀胱甘肽是還原劑,可以還原Fe3+和順鉑前驅藥物,幫助鐵和鉑釋放。 鉑可以催化過氧化氫產生氧氣。在共軛焦雷射掃描顯微鏡影像中FePt@MIL−125−NH2−Pt(IV)產生的綠色螢光最多,顯示出高效的活性氧生成。
Cancer is a leading global cause of death, and the development of nanomedicine with multimodal therapies has shown promise in enhancing therapeutic efficacy while reducing side effects. Sonodynamic therapy, compared to photodynamic therapy, offers deeper penetration depth. Herein, we design a nanomedicine FePt@MIL−125−NH2−Pt(IV) for synergistic chemotherapy, chemodynamic therapy (CDT), and sonodynamic therapy (SDT). The Fe component of FePt performs the Fenton reaction for CDT, generating reactive oxygen species in the tumor microenvironment (TME). The Pt component of FePt acts as a catalyst for decomposing H2O2 to produce H2O and O2. This is crucial because a high concentration of H2O2 and a hypoxic environment in the TME can reduce the effectiveness of SDT. MIL−125−NH2, a semiconducting metal−organic frameworks (MOFs), can generate separated electrons and electron holes under ultrasonic wave irradiation. The electrons can then reduce O2 into ‧O2−, while electron holes can oxidize H2O into ‧OH. Finally, the free amino groups of the MOFs can conjugate with Pt(IV)−prodrug via amide bond formation, contributing to chemotherapy. This integration aims to overcome limitations in penetration depth and improve the multimodal anticancer treatments.
(1) Cui, T.; Li, X.; Shu, Y.; Huang, X.; Wang, Y.; Zhang, W. Utilizing glutathione−triggered nanoparticles to enhance chemotherapy of lung cancer by reprograming the tumor microenvironment. Int. J. Pharm. 2018, 552, 16−26.
(2) Li, Y.; Zhao, L.; Li, X. F. Hypoxia and the Tumor Microenvironment. Technol. Cancer Res. Treat. 2021, 20, 15330338211036304.
(3) Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324, 1029−1033.
(4) Tian, H.; Zhang, M.; Jin, G.; Jiang, Y.; Luan, Y. Cu−MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy. J. Colloid. Interf. Sci. 2021, 587, 358−366.
(5) Wu, Y.; Guo, T.; Qiu, Y.; Lin, Y.; Yao, Y.; Lian, W.; Lin, L.; Song, J.; Yang, H. An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy. Chem. Sci. 2019, 10, 7068−7075.
(6) Fu, P. P.; Xia, Q.; Hwang, H. M.; Ray, P. C.; Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64−75.
(7) Damasco, J. A.; Ravi, S.; Perez, J. D.; Hagaman, D. E.; Melancon, M. P. Understanding nanoparticle toxicity to direct a Safe−by−Design approach in cancer nanomedicine. Nanomaterials 2020, 10, 2186.
(8) Wu, H.; Yin, J. J.; Wamer, W. G.; Zeng, M.; Lo, Y. M. Reactive oxygen species−related activities of nano−iron metal and nano−iron oxides. J. Food Drug Anal. 2014, 22, 86−94.
(9) Cao, W.; Jin, M.; Yang, K.; Chen, B.; Xiong, M.; Li, X.; Cao, G. Fenton/Fenton−like metal−based nanomaterials combine with oxidase for synergistic tumor therapy. J. Nanobiotechnol. 2021, 19, 325.
(10) Zhang, C.; Guo, Y.; Shen, M.; Shi, X. Dendrimer‐Based Nanodrugs for Chemodynamic Therapy of Tumors. Adv. Nanobiomed. Res. 2024, 4, 2300149
(11) Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic Therapy: Tumour Microenvironment−Mediated Fenton and Fenton−like Reactions. Angew. Chem. Int. Ed. Engl. 2019, 58, 946−956.
(12) Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. Hematoporphyrin as a sensitizer of cell−damaging effect of ultrasound. Jpn. J. Cancer Res. 1989, 80, 219−222.
(13) Rengeng, L.; Qianyu, Z.; Yuehong, L.; Zhongzhong, P.; Libo, L. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagn. Photodyn. 2017, 19, 159−166.
(14) Liang, S.; Deng, X.; Ma, P.; Cheng, Z.; Lin, J. Recent Advances in Nanomaterial−Assisted Combinational Sonodynamic Cancer Therapy. Adv. Mater. 2020, 32, 2003214.
(15) Hinman, J. J.; Suslick, K. S. Nanostructured Materials Synthesis Using Ultrasound. Top Curr. Chem. 2017, 375, 12.
(16) Canavese, G.; Ancona, A.; Racca, L.; Canta, M.; Dumontel, B.; Barbaresco, F.; Limongi, T.; Cauda, V. Nanoparticle−assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem. Eng. J. 2018, 340, 155−172.
(17) Xing, X.; Zhao, S.; Xu, T.; Huang, L.; Zhang, Y.; Lan, M.; Lin, C.; Zheng, X.; Wang, P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord. Chem. Rev. 2021, 445, 214087.
(18) Wang, S.; Zhang, C.; Fang, F.; Fan, Y.; Yang, J.; Zhang, J. Beyond traditional light: NIR−II light−activated photosensitizers for cancer therapy. J. Mater. Chem. B 2023, 11, 8315−8326.
(19) Ash, C.; Dubec, M.; Donne, K.; Bashford, T. Effect of wavelength and beam width on penetration in light−tissue interaction using computational methods. Laser Med. Sci. 2017, 32, 1909−1918.
(20) Wang, X.; Wu, M.; Li, H.; Jiang, J.; Zhou, S.; Chen, W.; Xie, C.; Zhen, X.; Jiang, X. Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor. Adv. Sci. 2022, 9, 2104125.
(21) Ogawa, K.; Umetsu, Y.; Kamimura, K. Changes in the absorption spectra and colour of tetraphenylporphyrins after redox reactions. J. Chem. Res. 2020, 44, 613−617.
(22) Zheng, M.; Zhao, P.; Luo, Z.; Gong, P.; Zheng, C.; Zhang, P.; Yue, C.; Gao, D.; Ma, Y.; Cai, L. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl. Mater. Interface 2014, 6, 6709−6716.
(23) Dos Santos, A. F.; Terra, L. F.; Wailemann, R. A.; Oliveira, T. C.; Gomes, V. M.; Mineiro, M. F.; Meotti, F. C.; Bruni−Cardoso, A.; Baptista, M. S.; Labriola, L. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells. BMC Cancer 2017, 17, 194.
(24) Luo, X.; Zhang, B.; Zhang, Y.; Meng, Z.; Li, P.; Jiang, X.; Xiao, J.; Lin, C.; Su, W. Rose bengal−modified gold nanorods for PTT/PDT antibacterial synergistic therapy. Photodiagn. Photodyn. 2022, 39, 102988.
(25) Gurung, P.; Lim, J.; Shrestha, R.; Kim, Y. W. Chlorin e6−associated photodynamic therapy enhances abscopal antitumor effects via inhibition of PD−1/PD−L1 immune checkpoint. Sci. Rep. 2023, 13, 4647.
(26) Cacaccio, J. C.; Durrani, F. A.; Missert, J. R.; Pandey, R. K. Photodynamic Therapy in Combination with Doxorubicin Is Superior to Monotherapy for the Treatment of Lung Cancer. Biomedicines 2022, 10, 10040857.
(27) Wang, X.; Zhong, X.; Bai, L.; Xu, J.; Gong, F.; Dong, Z.; Yang, Z.; Zeng, Z.; Liu, Z.; Cheng, L. Ultrafine Titanium Monoxide (TiO1+x) Nanorods for Enhanced Sonodynamic Therapy. J. Am. Chem. Soc. 2020, 142, 6527−6537.
(28) Sun, L.; Wang, X.; Gong, F.; Yin, K.; Zhu, W.; Yang, N.; Bai, S.; Liao, F.; Shao, M.; Cheng, L. Silicon nanowires decorated with platinum nanoparticles were applied for photothermal−enhanced sonodynamic therapy. Theranostics 2021, 11, 9234−9242.
(29) Zhang, T.; Sun, Y.; Cao, J.; Luo, J.; Wang, J.; Jiang, Z.; Huang, P. Intrinsic nucleus−targeted ultra−small metal−organic framework for the type I sonodynamic treatment of orthotopic pancreatic carcinoma. J. Nanobiotechnol. 2021, 19, 315.
(30) Meng, X.; Sun, S.; Gong, C.; Yang, J.; Yang, Z.; Zhang, X.; Dong, H. Ag−Doped Metal−Organic Frameworks' Heterostructure for Sonodynamic Therapy of Deep−Seated Cancer and Bacterial Infection. ACS Nano. 2022, 1174−1186.
(31) Zhai, J.; Yang, H.; Wang, Z.; Li, Y.; Ning, C. Multifunctional nanomaterials−enhanced synergistic sono−phototherapy: Breaking the limitation of monotherapy. Smart Mater. Med. 2022, 3, 315−328.
(32) Meng, Y.; Zhang, D.; Sun, Y.; Dai, Z.; Zhang, T.; Yu, D.; Zhang, G.; Zheng, X. Core−shell FePt−cube@covalent organic polymer nanocomposites: a multifunctional nanocatalytic agent for primary and metastatic tumor treatment. J. Mater. Chem. B 2020, 8, 11021−11032.
(33) Liang, S.; Deng, X.; Chang, Y.; Sun, C.; Shao, S.; Xie, Z.; Xiao, X.; Ma, P.; Zhang, H.; Cheng, Z.; Lin, J. Intelligent Hollow Pt−CuS Janus Architecture for Synergistic Catalysis−Enhanced Sonodynamic and Photothermal Cancer Therapy. Nano. Lett. 2019, 19, 4134−4145.
(34) Liang, S.; Zhou, Q.; Wang, M.; Zhu, Y.; Wu, Q.; Yang, X. Water−soluble L−cysteine−coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int. J. Nanomed. 2015, 10, 2325−2333.
(35) Wen, Y.; Zhang, P.; Sharma, V. K.; Ma, X.; Zhou, H.−C. Metal−organic frameworks for environmental applications. Cell Rep. Phys. Sci. 2021, 2, 100384.
(36) Raptopoulou, C. P. Metal−Organic Frameworks: Synthetic Methods and Potential Applications. Materials. 2021, 14, 310.
(37) Cai, W.; Wang, J.; Chu, C.; Chen, W.; Wu, C.; Liu, G. Metal−Organic Framework−Based Stimuli−Responsive Systems for Drug Delivery. Adv. Sci. 2019, 6, 1801526.
(38) Hu, W.; Wang, S.; Jiang, C.; Zheng, M.; Bai, Z.; Srivastava, D.; Kumar, A.; Liu, J. Recent advances in sonodynamic therapy by MOFs−based platforms for biomedical applications. Dyes Pigments. 2023, 219, 111596.
(39) Heo, D. Y.; Do, H. H.; Ahn, S. H.; Kim, S. Y. Metal−Organic Framework Materials for Perovskite Solar Cells. Polymers 2020, 12, 2061.
(40) Wang, X.; Zhong, X.; Cheng, L. Titanium−based nanomaterials for cancer theranostics. Coord. Chem. Rev. 2021, 430, 213662.
(41) Zhou, R.; Chang, M.; Shen, M.; Cong, Y.; Chen, Y.; Wang, Y. Sonocatalytic Optimization of Titanium−Based Therapeutic Nanomedicine. Adv. Sci. 2023, 10, 2301764.
(42) Liang, S.; Xiao, X.; Bai, L.; Liu, B.; Yuan, M.; Ma, P.; Pang, M.; Cheng, Z.; Lin, J. Conferring Ti−Based MOFs with Defects for Enhanced Sonodynamic Cancer Therapy. Adv. Mater. 2021, 33, 2100333.
(43) Lee, V. E. Y.; Chin, C. F.; Ang, W. H. Design and investigation of photoactivatable platinum(IV) prodrug complexes of cisplatin. Dalton Trans. 2019, 48, 7388−7393.
(44) Rocha, C. R. R.; Silva, M. M.; Quinet, A.; Cabral−Neto, J. B.; Menck, C. F. M. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics 2018, 73, 478.
(45) Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436−3486.
(46) Basu, A.; Krishnamurthy, S. Cellular responses to Cisplatin−induced DNA damage. J. Nucleic. Acids. 2010, 2010, 201367.
(47) Ma, P.; Xiao, H.; Yu, C.; Liu, J.; Cheng, Z.; Song, H.; Zhang, X.; Li, C.; Wang, J.; Gu, Z.; Lin, J. Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier−Mediated Generation of Highly Toxic Reactive Oxygen Species. Nano. Lett. 2017, 17, 928−937.
(48) Wu, P. H.; Cheng, P. F.; Kaveevivitchai, W.; Chen, T. H. MOF−based nanozyme grafted with cooperative Pt(IV) prodrug for synergistic anticancer therapy. Colloid. Surface. B. 2023, 225, 113264.
(49) Cheng, J.; Zhu, Y.; Xing, X.; Xiao, J.; Chen, H.; Zhang, H.; Wang, D.; Zhang, Y.; Zhang, G.; Wu, Z.; Liu, Y. Manganese−deposited iron oxide promotes tumor−responsive ferroptosis that synergizes the apoptosis of cisplatin. Theranostics. 2021, 11, 5418−5429.
(50) Ding, S.−s.; He, L.; Bian, X.−w.; Tian, G. Metal−organic frameworks−based nanozymes for combined cancer therapy. Nano Today 2020, 35, 100920.
(51) Sun, Y.; Miao, H.; Ma, S.; Zhang, L.; You, C.; Tang, F.; Yang, C.; Tian, X.; Wang, F.; Luo, Y.; Lin, X.; Wang, H.; Li, C.; Li, Z.; Yu, H.; Liu, X.; Xiao, Y.; Gong, Y.; Zhang, J.; Quan, H.; Xie, C. FePt−Cys nanoparticles induce ROS−dependent cell toxicity, and enhance chemo−radiation sensitivity of NSCLC cells in vivo and in vitro. Cancer Lett. 2018, 418, 27−40.
(52) Meng, Y.; Zhang, D.; Chen, X.; Dai, Z.; Yao, X.; Cui, P.; Yu, D.; Zhang, G.; Zheng, X. FePt Nanoparticles Embedded in Metal–Organic Framework Nanoparticles for Tumor Imaging and Eradication. ACS Appl. Nano Mater. 2020, 3, 4494−4503.
(53) Phan, T. T. V.; Bui, N. Q.; Moorthy, M. S.; Lee, K. D.; Oh, J. Synthesis and In Vitro Performance of Polypyrrole−Coated Iron−Platinum Nanoparticles for Photothermal Therapy and Photoacoustic Imaging. Nanoscale Res. Lett. 2017, 12, 570.
(54) Hu, Z.; Wang, S.; Dai, Z.; Zhang, H.; Zheng, X. A novel theranostic nano−platform (PB@FePt−HA−g−PEG) for tumor chemodynamic−photothermal co−therapy and triple−modal imaging (MR/CT/PI) diagnosis. J. Mater. Chem. B 2020, 8, 5351−5360.
(55) Kou, Y.; Dai, Z.; Cui, P.; Hu, Z.; Tian, L.; Zhang, F.; Duan, H.; Xia, Q.; Liu, Q.; Zheng, X. A flowerlike FePt/MnO2/GOx−based cascade nanoreactor with sustainable O2 supply for synergistic starvation−chemodynamic anticancer therapy. J. Mater. Chem. B 2021, 9, 8480−8490.
(56) Yang, B.; Liu, Q.; Yao, X.; Zhang, D.; Dai, Z.; Cui, P.; Zhang, G.; Zheng, X.; Yu, D. FePt@MnO−Based Nanotheranostic Platform with Acidity−Triggered Dual−Ions Release for Enhanced MR Imaging−Guided Ferroptosis Chemodynamic Therapy. ACS Appl. Mater. Inter. face. 2019, 11, 38395−38404.
(57) Zhang, F.; Xin, C.; Dai, Z.; Hu, H.; An, Q.; Wang, F.; Hu, Z.; Sun, Y.; Tian, L.; Zheng, X. Oncocyte Membrane−Camouflaged Multi−Stimuli−Responsive Nanohybrids for Synergistic Amplification of Tumor Oxidative Stresses and Photothermal Enhanced Cancer Therapy. ACS. Appl. Mater. Interface. 2022, 14, 40633−40644.
(58) Zhang, C.; Wang, P.; Zhang, Y. N.; Lu, P.; Huang, X.; Wang, Y.; Ran, L.; Xin, H.; Xu, X.; Gao, W.; Sun, Y.; Zhang, L.; Zhang, G. Biodegradable nanoplatform upregulates tumor microenvironment acidity for enhanced cancer therapy via synergistic induction of apoptosis, ferroptosis, and anti−angiogenesis. J. Nanobiotechnol. 2023, 21, 59.
(59) Zhang, H.; Li, J.; Chen, Y.; Wu, J.; Wang, K.; Chen, L.; Wang, Y.; Jiang, X.; Liu, Y.; Wu, Y.; Jin, D.; Bu, W. Magneto−Electrically Enhanced Intracellular Catalysis of FePt−FeC Heterostructures for Chemodynamic Therapy. Adv. Mater. 2021, 33, 2100472.
(60) Guo, Q.; Li, J.; Mao, J.; Chen, W.; Yang, M.; Yang, Y.; Hua, Y.; Qiu, L. Hollow MIL−125 Nanoparticles Loading Doxorubicin Prodrug and 3−Methyladenine for Reversal of Tumor Multidrug Resistance. J. Funct. Biomater. 2023, 14, 546.
(61) Rengaraj, A.; Puthiaraj, P.; Heo, N. S.; Lee, H.; Hwang, S. K.; Kwon, S.; Ahn, W. S.; Huh, Y. S. Porous NH2−MIL−125 as an efficient nano−platform for drug delivery, imaging, and ROS therapy utilized Low−Intensity Visible light exposure system. Colloids Surf. B Biointerfaces 2017, 160, 1−10.
(62) Dai, Z.; Li, X.; Chen, Q.; Zhu, Y.; Shi, Z.; Deng, X.; Wang, C.; Chen, H. Injectable Responsive Hydrogel Delivery Platform: Enabling High Tissue Penetration and Sonogenetic‐Like Potentiating Anti‐Tumor Immunotherapy. Adv. Funct. Mater. 2024, 2313723.
(63) Wang, Q.; Tian, Y.; Yao, M.; Fu, J.; Wang, L.; Zhu, Y. Bimetallic Organic Frameworks of High Piezovoltage for Sono−Piezo Dynamic Therapy. Adv. Mater. 2023, 35, 2301784.
(64) Wang, S.; Yin, N.; Li, Y.; Xiang, T.; Jiang, W.; Zhao, X.; Liu, W.; Zhang, Z.; Shi, J.; Zhang, K.; Guo, X.; Si, P.; Liu, J. Copper−based metal−organic framework impedes triple−negative breast cancer metastasis via local estrogen deprivation and platelets blockade. J. Nanobiotechnol. 2022, 20, 313.
(65) Wei, Y.; Zhao, H.; Liu, Z.; Yang, J.; Ren, J.; Qu, X. MOFs Modulate Copper Trafficking in Tumor Cells for Bioorthogonal Therapy. Nano. Lett. 2024, 24, 1341−1350.
(66) Moradi, M.; Aliomrani, M.; Tangestaninejad, S.; Varshosaz, J.; Kazemian, H.; Emami, F. S.; Rostami, M. Hyaluronic acid targeted metal organic framework based on iron (III) for delivery of platinum curcumin cytotoxic agent to triple negative breast cancer cell line. Appl. Organomet. 2022, 36, 6755.
(67) Zhang, Q.; Kuang, G.; Wang, H.; Zhao, Y.; Wei, J.; Shang, L. Multi−Bioinspired MOF Delivery Systems from Microfluidics for Tumor Multimodal Therapy. Adv. Sci. 2023, 10, 2303818.
(68) Wang, Y.; Wu, W.; Mao, D.; Teh, C.; Wang, B.; Liu, B. Metal–Organic Framework Assisted and Tumor Microenvironment Modulated Synergistic Image‐Guided Photo‐Chemo Therapy. Adv. Funct. Mater. 2020, 30, 2002431.
(69) Sun, H.; Chen, X.; Chen, D.; Dong, M.; Fu, X.; Li, Q.; Liu, X.; Wu, Q.; Qiu, T.; Wan, T.; Li, S. Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation. Int. J. Nanomed. 2012, 7, 3295−3307.
(70) Xiao, J.−D.; Han, L.; Luo, J.; Yu, S.−H.; Jiang, H.−L. Integration of Plasmonic Effects and Schottky Junctions into Metal–Organic Framework Composites: Steering Charge Flow for Enhanced Visible−Light Photocatalysis. Angew. Chem. Int. Ed. 2018, 57, 1103−1107.
(71) Song, J.−L.; Huang, Z.−Q.; Mao, J.; Chen, W.−J.; Wang, B.; Yang, F.−W.; Liu, S.−H.; Zhang, H.−J.; Qiu, L.−P.; Chen, J.−H. A facile synthesis of uniform hollow MIL−125 titanium−based nanoplatform for endosomal esacpe and intracellular drug delivery. Chem. Eng. J. 2020, 396, 125246.
(72) Tang, T.; Gong, Y.; Gao, Y.; Pang, X.; Liu, S.; Xia, Y.; Liu, D.; Zhu, L.; Fan, Q.; Sun, X. A pH−responsive liposomal nanoplatform for co−delivery of a Pt(IV) prodrug and cinnamaldehyde for effective tumor therapy. Front. Bioeng. Biotechnol. 2023, 11, 1191534.
(73) Ma, B.; Wang, S.; Liu, F.; Zhang, S.; Duan, J.; Li, Z.; Kong, Y.; Sang, Y.; Liu, H.; Bu, W.; Li, L. Self−Assembled Copper−Amino Acid Nanoparticles for in Situ Glutathione "AND" H2O2 Sequentially Triggered Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141, 849−857.
(74) Yuan, M.; Liang, S.; Zhou, Y.; Xiao, X.; Liu, B.; Yang, C.; Ma, P. a.; Cheng, Z.; Lin, J. A Robust Oxygen−Carrying Hemoglobin−Based Natural Sonosensitizer for Sonodynamic Cancer Therapy. Nano. Lett. 2021, 21, 6042−6050.
(75) Hu, C.; Wang, J.; Liu, S.; Cai, L.; Zhou, Y.; Liu, X.; Wang, M.; Liu, Z.; Pang, M. Urchin−Shaped Metal Organic/Hydrogen−Bonded Framework Nanocomposite as a Multifunctional Nanoreactor for Catalysis−Enhanced Synergetic Therapy. ACS Appl. Mater. Interface 2021, 13, 4825−4834.
(76) Lin, Y. S.; Lin, K. S.; Mdlovu, N. V.; Weng, M. T.; Tsai, W. C.; Jeng, U. S. De novo synthesis of a MIL−125(Ti) carrier for thermal− and pH−responsive drug release. Biomater. Adv. 2022, 140, 213070.
(77) Mocniak, K. A.; Kubajewska, I.; Spillane, D. E. M.; Williams, G. R.; Morris, R. E. Incorporation of cisplatin into the metal–organic frameworks UiO66−NH2 and UiO66 – encapsulation vs. conjugation. RSC Adv. 2015, 5, 83648−83656.
(78) Guo, F.; Guo, J. H.; Wang, P.; Kang, Y. S.; Liu, Y.; Zhao, J.; Sun, W. Y. Facet−dependent photocatalytic hydrogen production of metal−organic framework NH2−MIL−125(Ti). Chem. Sci. 2019, 10, 4834−4838.
(79) Xiao, J. D.; Han, L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of Plasmonic Effects and Schottky Junctions into Metal−Organic Framework Composites: Steering Charge Flow for Enhanced Visible−Light Photocatalysis. Angew. Chem. Int. Ed. 2018, 57, 1103−1107.
(80) Samimi, S.; Maghsoudnia, N.; Eftekhari, R. B.; Dorkoosh, F. Lipid−Based Nanoparticles for Drug Delivery Systems. In Characterization and Biology of Nanomaterials for Drug Delivery, 2019; 47−76.
(81) Hu, S.; Liu, M.; Li, K.; Song, C.; Zhang, G.; Guo, X. Surfactant−assisted synthesis of hierarchical NH2−MIL−125 for the removal of organic dyes. RSC Adv. 2017, 7, 581−587.
(82) Zhang, X.; Yue, K.; Rao, R.; Chen, J.; Liu, Q.; Yang, Y.; Bi, F.; Wang, Y.; Xu, J.; Liu, N. Synthesis of acidic MIL−125 from plastic waste: Significant contribution of N orbital for efficient photocatalytic degradation of chlorobenzene and toluene. Appl. Catal. B− Environ. 2022, 310, 121300.
(83) Makula, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV−Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814−6817.
(84) Ning, S.; Dai, X.; Tang, W.; Guo, Q.; Lyu, M.; Zhu, D.; Zhang, W.; Qian, H.; Yao, X.; Wang, X. Cancer cell membrane−coated C−TiO2 hollow nanoshells for combined sonodynamic and hypoxia−activated chemotherapy. Acta Biomater. 2022, 152, 562−574.
(85) Li, P.; Xuan, Y.; Jiang, B.; Zhang, S.; Xia, C. Hollow La0.6Sr0.4Ni0.2Fe0.75Mo0.05O3−δ electrodes with exsolved FeNi3 in quasi−symmetrical solid oxide electrolysis cells for direct CO2 electrolysis. Electrochem. 2022, 134, 107188.
(86) Matin, M. A.; Lee, E.; Kim, H.; Yoon, W.−S.; Kwon, Y.−U. Rational syntheses of core–shell Fe@(PtRu) nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO−poisoning and highly enhanced activity. J. Mater. Chem. A 2015, 3, 17154−17164.
(87) Solís, R. R.; Gómez−Avilés, A.; Belver, C.; Rodriguez, J. J.; Bedia, J. Microwave−assisted synthesis of NH2−MIL−125(Ti) for the solar photocatalytic degradation of aqueous emerging pollutants in batch and continuous tests. J. Environ. Chem. Eng. 2021, 9, 106230.
(88) Satoh, A. Y.; Trosko, J. E.; Masten, S. J. Methylene Blue Dye Test for Rapid Qualitative Detection of Hydroxyl Radicals Formed in a Fenton’s Reaction Aqueous Solution. Environ. Sci. Technol. 2007, 41, 2881−2887.
(89) Mosquera, J.; Garcia, I.; Liz−Marzan, L. M. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc. Chem. Res. 2018, 51, 2305−2313.
(90) Yu, D.; Zha, Y.; Zhong, Z.; Ruan, Y.; Li, Z.; Sun, L.; Hou, S. Improved detection of reactive oxygen species by DCFH−DA: New insight into self−amplification of fluorescence signal by light irradiation. Sens. Actuators. B Chem. 2021, 339, 129878.
校內:2029-08-07公開