| 研究生: |
王瓊雯 Wang, Chiung-Wen |
|---|---|
| 論文名稱: |
一.介白素19與介白素21促使活化的T淋巴球細胞表現介白素13
二.介白素24在體內抑制肝癌之生長 Ⅰ.Up-regulation of IL-13 by IL-19 and IL-21 in association with activation of T cell Ⅱ.IL-24 suppresses the growth of hepatoma in vivo |
| 指導教授: |
張明熙
Chang, Ming-shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 肝癌 、介白素24 、介白素13 、介白素19 、介白素21 、氣喘 |
| 外文關鍵詞: | asthma, interleukin-24, hepatoma, interleukin-19, interleukin-21, interleukin-13 |
| 相關次數: | 點閱:51 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一. IL-13(介白素-13)是由第二型幫助性T淋巴球所分泌的重要細胞激素,和氣喘這種疾病有所關聯性。IL-19 (介白素-19)是屬於IL-10(介白素-10)家族成員之一而且目前對於它所扮演的生物功能了解不多。IL-21(介白素21)是第一型細胞激素家族成員之一,此外,會專一性的抑制未活化幫助性T淋巴球分化成由干擾素-r誘導的第二型幫助性T淋巴球,所以也是一種第二型幫助性T淋巴球的細胞激素。在我們之前的研究指出IL-19和IL-21和氣喘的發病機制有關,我們藉由ELISA分析氣喘病人血清中含有的IL-19和IL-21,發現氣喘病人血清中IL -19和IL-21的含量較健康個體高兩倍。有興趣去了解IL-19和IL-21作用在活化的T淋巴球對於IL-13基因表現的調控情形,我們構築兩段相對於轉錄起始點有可能為轉錄活化位置的片段在含有luciferase基因的質體上,這些片段分別包含自轉錄起始點上游的+49開始到-940及-1560的序列,簡稱為pA和pB。將這些質體transfect至Jurkat T 細胞 。Jurkat T 細胞是人類T 細胞被使用當作需要T 細胞活化的模式,當培養液加上PMA和ConA時,細胞會被刺激呈現活化狀態。藉由luciferase的活性分析,發現pA可以驅使 luciferase有較高的表現量。當IL-21不論作用在是否有活化的Jurkat T細胞,對於IL-13自轉錄起始點上游的+49開始到-940至-1560的promoter活性皆沒有影響,有可能IL-21對Jurkat T細胞IL-13基因表現是影響在mRNA的穩定性或是在其他片段上。因此,接下來我們以real-time PCR的方式去分析IL-19和IL-21作用在Jurkat T 細胞對於IL-13轉錄層面的影響,結果指出IL-19與IL-21促使活化的Jurkat T細胞表現IL-13,因為IL-19與IL-21作用於未活化的Jurkat T細胞對於IL-13的表現沒有差異,所以促使IL-13的表現,T淋巴球細胞先被活化是有必要的。
二. Mda-7是利用subtractive hybridization的方法從人類HO-1黑色素細胞瘤被發現的。mda-7 近來也被稱為IL-24,屬於IL-10家族成員之一。IL-24 對於廣泛性的腫瘤不論是在體內或體外都可以抑制其生長,而對正常的細胞則沒有傷害性。然而,IL-24是否具有抗肝癌的活性仍是未知的。我們的目的是以intramuscular electroporation的方式表達IL-24的基因,觀察IL-24對患有肝癌小鼠之影響,經由打入 ML-14a細胞至脾臟再轉移至肝臟而產生原位肝癌小鼠模式。結果顯示在打入ML-14a細胞至脾臟第43天,有過量表現IL-24的組別(N=13)具有46%的存活率,相較控制組7%之存活率高,所以IL-24具有抗肝癌的活性。有過量表現IL-24的小鼠血清中IL-6的含量也較控制組高,推測IL-24能抗肝癌之機制可能和啟動免疫系統有所關聯。然而,在體外觀察IL-24對ML-14a細胞生長之情形,並沒有什麼影響。因此,有關IL-24更詳細的抗肝癌機制,有待日後進一步的探討,而在未來IL-24也許有潛力應用在治療肝癌的疾病。
Ⅰ. Interleukin (IL)-13 is an important cytokine secreted from type 2 helper T lymphocytes and has been associated with asthma. Interleukin (IL)-19 belongs to the IL-10 family and little was known about the biologic function. Interleukin (IL)-21 is a new member of the type I cytokine superfamily and is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. In our previous studies, we explored IL-19 & IL-21 associated with pathogenesis of asthma, we employed ELISA to analyze the serum level of IL-19 & IL-21 in the asthma patients and found that IL-19 & IL-21 level in the patients was two-fold over the normal control. To investigate the regulation of IL-13 gene expression by IL-19 & IL-21 with activation of T cell in vitro. We constructed two plasmid DNA vectors which contained different length of IL-13 promoter (-1560 to +49,-940 to +49) upstream of luciferase reporter gene. We named these two constructs, pA and pB. These two plasmids were transfected into Jurkat T cell line. Jurkat T cells were used as a model to examine the requirements of T cell activation. Cell cultures were stimulated with PMA and ConA. The results of luciferase activity showed that pA region expressed higher promoter activity. Treatment of cells with IL-21 resulted in no significant effect of luciferase activity. IL-21 may induce IL-13 transcript on the activated T cells through enhancing mRNA stability or other factors. Further, we employed real-time PCR to analyze the transcription level of IL-13 by treatment of IL-19 & IL-21 in Jurkat T cell line. IL-19 & IL-21 induced IL-13 transcript by the activated T cells. Activation of T cells is required for induction of IL-13 because IL-19 & IL-21 did not induce IL-13 production on unstimulated T cells.
Ⅱ. The melanoma differentiation-associated gene 7 (mda-7) was identified by a subtraction hybridization approach from the human HO-1 melanoma cell line. The mda-7 gene belongs to the IL-10 family of cytokines and has recently been classified as IL-24. Introduction of the mda-7/IL-24 gene into a wide variety of cancer cells suppressed growth in vitro and in vivo, with minimal toxicity to normal cells. However, it has not been unkown whether IL-24 has the activity of anti-hepatoma. The purpose of this study was to determine the in vivo tumor suppression function of IL-24 on the hepatoma cells by the approach of intramuscular electroporation. We generated a hepatoma mice model by injecting ML-14acells from mice spleen to allow tumor cells grown at liver. Forty-three days after injection of ML-14a cells. Forty-six percent of mice (N=13) survived from hepatoma compare to seven percent of the negative control. This result demonstrated that IL-24 is a tumor suppressor for hepatoma cells. Also, IL-6 level of mouse serum were higher than negative control. We proposed that anti-tumor mechanism of IL-24 was associated with immunostimulatory activity. However, Treatment of ML-14a cells with IL-24 resulted in no significant antiproliferative activity in vitro. The detailed mechanism of the anti-hepatoma activity of IL-24 should be further studied. IL-24 may be an effective treatment for hepatoma in the future.
1. Moore KW, O'Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu Rev Immunol. 11:165-90, 1993.
2. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 174(5):1209-20, 1991.
3. Vieira P, de Waal-Malefyt R, Dang MN, Johnson KE, Kastelein R, FiorentinoDF, deVries JE, Roncarolo MG, Mosmann TR, Moore KW. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci U S A. 88(4):1172-6, 1991.
4. Burdin N, Peronne C, Banchereau J, Rousset F. Epstein-Barr virus transformation induces B lymphocytes to produce human interleukin 10. J Exp Med. 177(2):295-304, 1993.
5. Benjamin D, Knobloch TJ, Dayton MA. Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.Blood. 80(5):1289-98, 1992.
6. Yssel H, De Waal Malefyt R, Roncarolo MG, Abrams JS, Lahesmaa R, Spits H, de Vries JE. IL-10 is produced by subsets of human CD4+ T cell clones and peripheral blood T cells. J Immunol. 149(7):2378-84, 1992.
7. Wanidworanun C, Strober W. Predominant role of tumor necrosis factor-alpha in human monocyte IL-10 synthesis. J Immunol. 151(12):6853-61, 1993.
8. Llorente L, Richaud-Patin Y, Fior R, Alcocer-Varela J, Wijdenes J, Fourrier BM, Galanaud P, Emilie D. In vivo production of interleukin-10 by non-T cells in rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus. A potential mechanism of B lymphocyte hyperactivity and autoimmunity. Arthritis Rheum. 37(11):1647-55, 1994.
9. Cush JJ, Splawski JB, Thomas R, McFarlin JE, Schulze-Koops H, Davis LS, Fujita K, Lipsky PE. Elevated interleukin-10 levels in patients with rheumatoid arthritis. Arthritis Rheum. 38(1):96-104, 1995.
10. Perez L, Orte J, Brieva JA. Terminal differentiation of spontaneous rheumatoid factor-secreting B cells from rheumatoid arthritis patients depends on endogenous interleukin-10. Arthritis Rheum. 38(12):1771-6, 1995.
11. Itoh K, Hirohata S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol. 154(9):4341-50, 1995.
12. Llorente L, Zou W, Levy Y, Richaud-Patin Y, Wijdenes J, Alcocer-Varela J, Morel-Fourrier B, Brouet JC, Alarcon-Segovia D, Galanaud P.Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med. 181(3):839-44, 1995.
13. Jinquan T, Larsen CG, Gesser B, Matsushima K, Thestrup-Pedersen K. Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor of IL-8-induced CD4+ T lymphocyte migration.J Immunol. 151(9):4545-51, 1993.
14. Matsuda M, Salazar F, Petersson M, Masucci G, Hansson J, Pisa P, Zhang QJ, Masucci MG, Kiessling R. Interleukin 10 pretreatment protects target cells from tumor- and allo-specific cytotoxic T cells and downregulates HLA class I expression. J Exp Med. 180(6):2371-6, 1994.
15. Kim J, Modlin RL, Moy RL, Dubinett SM, McHugh T, Nickoloff BJ, Uyemura K. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J Immunol. 155(4):2240-7, 1995.
16. Suzuki T, Tahara H, Narula S, Moore KW, Robbins PD, Lotze MT. Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J Exp Med. 182(2):477-86, 1995.
17. Fortis C, Foppoli M, Gianotti L, Galli L, Citterio G, Consogno G, Gentilini O, Braga M. Increased interleukin-10 serum levels in patients with solid tumours.Cancer Lett. 104(1):1-5, 1996.
18. Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol. 167(7):3545-9, 2001.
19. Gallagher G, Dickensheets H, Eskdale J, Izotova LS, Mirochnitchenko OV, Peat JD, Vazquez N, Pestka S, Donnelly RP, Kotenko SV. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun .1(7):442-50, 2000.
20. Wolk K, Kunz S, Asadullah K, Sabat R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol. 168(11):5397-402, 2002.
21. Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha.J Immunol. 169(8):4288-97, 2002.
22. Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, West J, Brandt C, Jelinek L, Madden K, McKernan PA, Foster DC, Jaspers S, Chandrasekher YA. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem. 277(49):47517-23, 2002.
23. Gallagher G, Eskdale J, Jordan W, Peat J, Campbell J, Boniotto M, Lennon GP, Dickensheets H, Donnelly RP. Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses. Int Immunopharmacol. 4(5): 615-26, 2004.
24. Sivakumar PV, Foster DC, Clegg CH. Interleukin-21 is a T-helper cytokine that regulates humoral immunity and cell-mediated anti-tumour responses. Immunology. 112(2): 177-82, 2004.
25. Wurster AL, Rodgers VL, Satoskar AR, Whitters MJ, Young DA, Collins M,Grusby MJ. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. J Exp Med. 196(7): 969-77, 2002.
26. Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol.22: 789-815, 2004.
27. Weiss A, Wiskocil RL, Stobo JD. The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J Immunol. 133(1): 123-8, 1984.
28. Dolganov G, Bort S, Lovett M, Burr J, Schubert L, Short D, McGurn M, Gibson C, Lewis DB. Coexpression of the interleukin-13 and interleukin-4 genes correlates with their physical linkage in the cytokine gene cluster on human chromosome 5q23-31. Blood. 87(8): 3316-26, 1996.
29. Kishikawa H, Sun J, Choi A, Miaw SC, Ho IC. The cell type-specific expression of the murine IL-13 gene is regulated by GATA-3. J Immunol. 167(8): 4414-20, 2001.
30. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 11(12): 2477-86, 1995.
31. Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CS, Fisher PB. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci. 93(17): 9160-5, 1996.
32. Ekmekcioglu S, Ellerhorst J, Mhashilkar AM, Sahin AA, Read CM, Prieto VG,Chada S, Grimm EA. Down-regulated melanoma differentiation associated gene (mda-7) expression in human melanomas. Int J Cancer. 94(1): 54-9, 2001.
33. Huang EY, Madireddi MT, Gopalkrishnan RV, Leszczyniecka M, Su Z, Lebedeva IV, Kang D, Jiang H, Lin JJ, Alexandre D, Chen Y, Vozhilla N, Mei MX, Christiansen KA, Sivo F, Goldstein NI, Mhashilkar AB, Chada S, Huberman E, Pestka S, Fisher PB. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene. 20(48): 7051-63, 2001.
34. Ellerhorst JA, Prieto VG, Ekmekcioglu S, Broemeling L, Yekell S, Chada S, Grimm EA. Loss of MDA-7 expression with progression of melanoma. J Clin Oncol. 20(4): 1069-74, 2002.
35. Lebedeva IV, Su ZZ, Chang Y, Kitada S, Reed JC, Fisher PB. The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene. 21(5): 708-18, 2002.
36. Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K, Dent P, Fisher PB. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci. 99(15): 10054-9, 2002.
37. Ekmekcioglu S, Ellerhorst JA, Mumm JB, Zheng M, Broemeling L, Prieto VG, Stewart AL, Mhashilkar AM, Chada S, Grimm EA. Negative association of melanoma differentiation-associated gene (mda-7) and inducible nitric oxide synthase (iNOS) in human melanoma: MDA-7 regulates iNOS expression in melanoma cells. Mol Cancer Ther. 2(1): 9-17, 2003.
38. Saeki T, Mhashilkar A, Chada S, Branch C, Roth JA, Ramesh R. Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene Ther. 7(23): 2051-7, 2000.
39. Saeki T, Mhashilkar A, Swanson X, Zou-Yang XH, Sieger K, Kawabe S, Branch CD, Zumstein L, Meyn RE, Roth JA, Chada S, Ramesh R. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 21(29): 4558-66, 2002.
40. Kawabe S, Nishikawa T, Munshi A, Roth JA, Chada S, Meyn RE. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanisms. Mol Ther. 6(5): 637-44, 2002.
41. Ramesh R, Mhashilkar AM, Tanaka F, Saito Y, Branch CD, Sieger K, Mumm JB, Stewart AL, Boquoi A, Dumoutier L, Grimm EA, Renauld JC, Kotenko S, Chada S, Boquio A. Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res. 63(16): 5105-13, 2003.
42. Sieger KA, Mhashilkar AM, Stewart A, Sutton RB, Strube RW, Chen SY, Pataer A, Swisher SG, Grimm EA, Ramesh R, Chada S. The tumor suppressor activity of MDA-7/IL-24 is mediated by intracellular protein expression in NSCLC cells. Mol Ther. 9(3): 355-67, 2004.
43. Ramesh R, Ito I, Gopalan B, Saito Y, Mhashilkar AM, Chada S. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther. 9(4): 510-8, 2004.
44. Nishikawa T, Ramesh R, Munshi A, Chada S, Meyn RE. Adenovirus-mediated mda-7 (IL24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther. 9(6): 818-28, 2004.
45. Su Z, Lebedeva IV, Gopalkrishnan RV, Goldstein NI, Stein CA, Reed JC, Dent P, Fisher PB. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci. 8(18): 10332-7, 2001.
46. Cao XX, Mohuiddin I, Chada S, Mhashilkar AM, Ozvaran MK, McConkey DJ, Miller SD, Daniel JC, Smythe WR. Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells, and is abrogated by over-expression of BCL-XL. Mol Med. 8(12): 869-76, 2002.
47. Su ZZ, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC, Goldstein NI, Fisher PB. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci. 95(24): 14400-5, 1998.
48. Mhashilkar AM, Stewart AL, Sieger K, Yang HY, Khimani AH, Ito I, Saito Y, Hunt KK, Grimm EA, Roth JA, Meyn RE, Ramesh R, Chada S. MDA-7 negatively regulates the beta-catenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther. 8(2): 207-19, 2003.
49. Su ZZ, Lebedeva IV, Sarkar D, Gopalkrishnan RV, Sauane M, Sigmon C, Yacoub A, Valerie K, Dent P, Fisher PB. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene. 22(8): 1164-80, 2003.
50. Yacoub A, Mitchell C, Lister A, Lebedeva IV, Sarkar D, Su ZZ, Sigmon C, McKinstry R, Ramakrishnan V, Qiao L, Broaddus WC, Gopalkrishnan RV, Grant S, Fisher PB, Dent P. Melanoma differentiation-associated 7 (interleukin 24) inhibits growth and enhances radiosensitivity of glioma cells in vitro and in vivo. Clin Cancer Res. 9(9): 3272-81, 2003.
51. Yacoub A, Mitchell C, Lebedeva IV, Sarkar D, Su ZZ, McKinstry R, Gopalkrishnan RV, Grant S, Fisher PB, Dent P. mda-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther. 2(4): 347-53, 2003.
52. Yacoub A, Mitchell C, Hong Y, Gopalkrishnan RV, Su ZZ, Gupta P, Sauane M,Lebedeva IV, Curiel DT, Mahasreshti PJ, Rosenfeld MR, Broaddus WC, James CD,Grant S, Fisher PB, Dent P. MDA-7 Regulates Cell Growth and Radiosensitivity In Vitro of Primary(Non-Established) Human Glioma Cells.Cancer Biol Ther. 2004.
53. Yacoub A, Mitchell C, Brannon J, Rosenberg E, Qiao L, McKinstry R, Linehan WM, Su ZS, Sarkar D, Lebedeva IV, Valerie K, Gopalkrishnan RV, Grant S, Fisher PB, Dent P. MDA-7 (interleukin-24) inhibits the proliferation of renal carcinoma cells and interacts with free radicals to promote cell death and loss of reproductive capacity. Mol Cancer Ther. 2(7): 623-32, 2003.
54. Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA, Reed JC, Fisher PB. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 22(54): 8758-73, 2003.
55. Lebedeva IV, Su ZZ, Sarkar D, Kitada S, Dent P, Waxman S, Reed JC, Fisher PB. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species. Cancer Res. 63(23): 8138-44, 2003.
56. Chen J, Chada S, Mhashilkar A, Miano JM. Tumor suppressor MDA-7/IL-24 selectively inhibits vascular smooth muscle cell growth and migration. Mol Ther. 8(2): 220-9, 2003.
57. Caudell EG, Mumm JB, Poindexter N, Ekmekcioglu S, Mhashilkar AM, Yang XH, Retter MW, Hill P, Chada S, Grimm EA. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol. 168(12): 6041-6, 2002.
58. Chen SH, Hu CP, Chang CM. Hepatitis B virus replication in well differentiated mouse hepatocyte cell lines immortalized by plasmid DNA.Cancer Res. 52(5): 1329-35, 1992.
59. Wang M, Tan Z, Zhang R, Kotenko SV, Liang P. Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem. 277(9): 7341-7, 2002.
60. Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV, Anantha S, Dickensheets H, Dumoutier L, Renauld JC, Zdanov A, Donnelly RP, Kotenko SV. Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2.J Immunol. 172(4): 2006-10, 2004.
61. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S, Eagan M, Foster D, Haldeman BA, Hammond A, Haugen H, Jelinek L, Kelly JD, Madden K, Maurer MF, Parrish-Novak J, Prunkard D, Sexson S, Sprecher C, Waggie K, West J, Whitmore TE, Yao L, Kuechle MK, Dale BA, Chandrasekher YA. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell. 104(1): 9-19, 2001.
62. Sauane M, Lebedeva IV, Su ZZ, Choo HT, Randolph A, Valerie K, Dent P,Gopalkrishnan RV, Fisher PB. Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways. Cancer Res. 64(9): 2988-93, 2004.
63. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 4(1): 25-36, 1996.
64. McClary H, Koch R, Chisari FV, Guidotti LG. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines. J Virol. 74(5): 2255-64, 2000.