| 研究生: |
郭義一 Kuo, Yi-i |
|---|---|
| 論文名稱: |
港池振盪二階非線性計算 Second-Order Nonlinear Harbor Resonance Computation |
| 指導教授: |
李兆芳
Lee, Jaw-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 港池振盪 、邊界元素法數值模式 、非線性問題 |
| 外文關鍵詞: | harbor resonance, nonlinear problems, boundary element method |
| 相關次數: | 點閱:98 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是利用邊界元素法港池振盪數值模式來計算,希望了解入射波浪進入已知港池後,港池內外波浪分佈的情形。本文的目的主要是希望將原本一階港池振盪計算,運用二階的邊界條件,令其計算在二階上,以期能夠更準確的模擬非線性之波浪對港池振盪之影響。
先將波浪場利用勢能波浪理論描述,所求解之非線性問題則利用泰勒級數展開,配合攝動法將問題表示成第一階和第二階邊界值問題,先將二階解分為水面非齊性通解與特解,通解部分為直接利用類似一階的港池振盪模式,代入二階條件計算,然後特解部份則是利用邊界元素法港池振盪數值模式所得出之一階振幅之值,將其轉換並代入第二階邊界值問題,藉以得到二階港池振盪問題之解,所求得之解,在與前人所作之研究比較上,有相當的準確度。
The purpose of this thesis is to calculate the problem of harbor resonance using a boundary element method. The nonlinear problems are considered, and calculated up to the second-order. In the numerical calculation, the first-order problem is simulated using the well known computational scheme originally proposed by Lee (1969). The second-order problem is separated into two parts, one with homogeneous free surface boundary condition, and the other with nonhomogeneous free surface condition. The second-order homogeneous problem is similar to the first-order problem, and is solved following the first-order procedure, except using the second-order wave number and the corresponding second-order incident wave condition. As for the nonhomogeneous problem, it is solved semi-analytically using the first-order numerical solutions. The present numerical model is used to investigate the second-order characteristics of the harbor resonant problem. The results indicate that the second-order consideration tends to increase the response wave energy inside the harbor basin, and should be important to be considered in harbor engineering.
1. Apte, A.S. and Marcou, C., Seiche in Ports, Proc. of the Fifth Conference on Coastal Engineering, Grenoble, France, pp.85-94, 1954.
2. Berkhoff, J.C.W., Computation of Combined Refraction Diffraction, Proc. 13th Coastal Engineering Conference, 1972.
3. Chen, H.S., Effects of Bottom Friction and Boundary Absorption on Water Wave Scattering, Applied Ocean Research, Vol.8, pp.99-104, 1986.
4. Chen, H.S. and Mei, C.C., Oscillations and Waves Forces in an Offshore Harbor, Ralph M. Parsons Laboratory, Report No.190, MIT, 1974.
5. Chwang, A.T., Ou, S.H. and Su, C.H., Wave Oscillations inside Porous Wall Harbors, Proc. the 5th Conference on Hydraulic Engineering, Taiwan, ROC, pp.853-868, 1990.
6. Hwang, L.S. and Tuck, E.O., On the Oscillations of Harbors of Arbitrary Shape, Submitted to J.F.M. (publication pending) 1969.
7. Ippen, A.T., Editor, Estuary and Coastline Hydrodynamics, McGraw-Hill Book Company, New York, 1966.
8. Ippen, A.T. and Goda, Y., Wave Induces Oscillations in Harbors: The Solution for a Rectangular Harbor Connected to the Open Sea, Report No.59, Hydrodynamic Laboratory, MIT, 1963.
9. Ippen, A.T. and Raichlen, F., Wave Induced Oscillations in Harbors: The Problem of Coupling of Highly Reflective Basins, Report No.49, Hydrodynamics Laboratory, MIT, 1962.
10. Ippen, A.T., Raichlen, F. and Sullivan, R.K., Wave Induced Oscillations in Harbors: Effect of Energy Dissipators in Coupled Basin Systems, Report No.52, Hydrodynamics Laboratory, MIT, 1962.
11. Kravtchenho, J. and McNown, J.S., Sciche in Rectangular Ports, Appl. Math., Vol.13, pp.19-26, 1955.
12. Lee, J.J., Wave-Induced Oscillations in Harbors of Arbitrary Shape, Report KH-R-20, W.M. Kerk Laboratory of Hydraulics and Water Resources, Califormia, Institute of Technology, Berkeley, California, 1969.
13. Lee, J.J., Wave-Induced Oscillations in Harbors of Arbitrary Geometry, J.F.M., Vol.45, pp.375-394, 1971.
14. Lee, J.J. and Raichlen, F., Oscillations in Harbors with Connected Basins, J. Waterways, Ports, Coastal and Ocean Engineering Division, ASCE, Vol.98, No.Ww3, pp.311-332, 1972.
15. Leendertse, J.J., Aspects of a Computational Model for Long Period Water Wave Propagation, Memorandum, RM-5294-PR, The Rand Corporation, 1967.
16. LeMehaute, B., Theory of Wave Agitation in a Harbor, Journal of the Hydraulics Division, ASCE, Vol.87, No.Hy2, pp.31-50, 1961.
17. LeMehaute, B., Discussion of the paper “Harbor Paradox” by J. Miles and W. Munk, Journal of the Waterways and Harbors Division, ASCE, Vol.88, No.WW2, pp.173-185, 1962.
18. McNown, J.S., Waves and Seiche in Idealized Ports, Gravity Wave Symposium, National Bureau of Standards, 1952.
19. Miles, J. and Munk, W., Harbor Paradox, J. Waterway and Harbors Division, ASCE, WW3, pp. 111-130, 1961.
20. Raichlen, F. and Ippen, A.T., Wave Induced Oscillations in Harbors, Journal of the Hydraulics Division, ASCE, Vol.91, No.Hy2, pp.1-26, 1965.
21. Tsay, T.K., Zhu, W. and Liu, P.L-F., A Finite Element Model for Wave Refraction, Diffraction, Reflection and Dissipation, Applied Ocean Research, Vol.11, No.1, pp.33-38, 1989.
22. Wilson, B.W., Seiches, Advanced Hydroscience, Vol.8, pp.1-94, 1972.
23. 周宗仁和林炤圭,應用邊界元素法解析任意地形及水深之港池水面波動問題,第八屆海洋工程研討會論文集,第111-129頁, 1986.
24. 陳柏旭和蔡丁貴,局部輻射邊界條件在水波數值模式上的應用,中華民國第十二屆海洋工程研討會論文集,第1-18頁,1990.
25. 蘇青和,多孔消波體波能消散解析及其應用於港池之研究,博士論文,國立成功大學水利及海洋工程研究所,民國八十二年。
26. 蘇青和、蔡丁貴和歐善惠,數值方法及輻射邊界在港池共振應用之探討,中華民國第十三屆海洋工程研討會論文集,第23-37頁,1991.
27. 許泰文,近岸水動力學,中國土木水利工程學會,2003.