| 研究生: |
陳諭群 Chen, Yu-Chun |
|---|---|
| 論文名稱: |
波爾相對應原理的複數軌跡詮釋 Complex-Trajectory Interpretation for Bohr’s Correspondence Principle |
| 指導教授: |
楊憲東
Yang, Ciann-Dong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 相對應原理 、量子力學 、波姆力學 、複數力學 、古典力學 |
| 外文關鍵詞: | Correspondence principle, Quantum mechanics, Bohmian mechanics, Complex mechanics, Classical mechanics |
| 相關次數: | 點閱:212 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
到目前為止,關於量子力學的軌跡詮釋有二種版本,一種是基於波姆力學的實數軌跡,另一種是基於複數力學的複數軌跡。將量子軌跡的定義擴展到複數平面的必要性,近年來已有許多文獻討論過,本論文將根據波爾的相對應原理(correspondence principle),提出一個新的證據顯示量子軌跡複數化的必要性。相對應原理提到,當量子數(能階)逐漸增加時,量子系統的行為應該逐漸趨近於古典系統的行為。本論文以相對應原理來測試量子力學目前的三種詮釋:哥本哈根的機率詮釋,波姆力學的實數軌跡詮釋,以及複數力學的複數軌跡詮釋。接受測試的是二個標準量子系統:簡諧振子以及無限深量子井內的粒子運動。測試結果顯示只有複數軌跡詮釋能通過相對應原理的考驗。長久以來大家都認為量子力學的機率詮釋滿足波爾的相對應原理,然則本論文指出這一看法實際上並不全然正確。量子力學機率論所描述的粒子平均行為確實滿足相對應原理,但是機率論所描述的粒子隨機行為則不然。亦即當量子數逐漸增加時,描述粒子隨機運動的量子機率密度並沒有收斂到描述粒子巨觀運動的古典機率密度。
除了證明複數軌跡滿足相對應原理之外,本論文同時找到了複數軌跡詮釋與量子機率論間之關聯性。在進行複數軌跡落點的機率統計時,如果只選取與實數軸相交的軌跡點進行統計,吾人發現所得到的機率分布曲線即是量子機率密度曲線。亦即量子機率原來是源自純實數軌跡點的統計,而忽略了帶有虛部軌跡點的統計,正是由於這樣的忽略使得量子機率論無法滿足相對應原理。唯有加入虛部動態的考慮,微觀的量子力學才能藉由量子數的增加完美收斂到巨觀的古典力學。
Till now, there are two versions of trajectory interpretation of quantum mechanics: one is the real-trajectory version based on Bohmian mechanics and the other is the complex-trajectory version based on complex mechanics. The necessity of extending quantum trajectories from real domain to complex domain has been studied recently by many researches. Based on Bohr’s correspondence principle, this thesis finds a new evidence for the necessity of the complexification of quantum trajectories. The correspondence principle states that as the quantum number increases to infinity, the behavior of a quantum system converges to the behavior of its corresponding classical system. The thesis tests the validity of the correspondence principle for the three interpretations of quantum mechanics: Copenhagen’s probability interpretation, Bohm’s real-trajectory interpretation and complex-trajectory interpretation. Two benchmark quantum models, namely, the harmonic oscillator and the infinite square well, are analyzed in the test by the three quantum interpretations, and the outcomes show that only the complex-trajectory interpretation satisfies the correspondence principle. While it is a common belief that the probability interpretation of quantum mechanics satisfies the correspondence principle, the test indicates that this long-standing claim is not necessarily true. The average behavior of a quantum system does satisfy the correspondence principle, but the actual random behavior of the quantum system does not. In other words, as the quantum number increases, the quantum probability density does not converge smoothly to the classical probability density.
Apart from proving the satisfaction of the correspondence principle by complex trajectories, this thesis also clarifies the connection between the quantum probability density and the complex trajectories. In the process of computing the statistical point-wise distribution of the complex trajectories, if we only consider the crossovers of the complex trajectories with the real axis and neglect all the remaining points on the trajectories, then the statistical distribution of such crossovers turns out to be the probability density solved from the Schrödinger equation. In other words, it can be said that the quantum probability density only accounts for the pure real points on the trajectories and neglect all the points with nonzero imaginary parts. It is this neglect that causes the deviation of the evolution of the probability density from the correspondence principle. Once all the points with nonzero imaginary parts are taken into account, probability interpretation of quantum mechanics recovers the Bohr’s correspondence principle.
[1]Abramowitz, M., and Stegun, I. A., “Handbook of Mathematical Function”,New York, 1972, pp. 446-449.
[2]Aris, E. “Vectors, Tensors and the Basic Equations of Fluid Mechanics”, Englewood Cliffs, NJ, 1962.
[3]Bohm, D., “A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables”, Physical Review, 85, 1952, pp.166-193.
[4]Bohm, D., and Hiley, B. J., “Non-locality and Locality of the Stochastic Interpretation of Quantum Mechanics”, Physics Reports, 172, 1989, pp. 93-122.
[5]Bohm, D., and Hiley, B. J., “The Undivided Universe”, Routledge, New York, 1993.
[6]Bohm, D., and Vigier, J. P., “Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations”, Physical Review, 96, 1954, pp. 208-216.
[7]Bohr, N., “Niels Bohr Collected Works, Vol.3: The Correspondence Principle(1918-1923)”, J. R. Nielsen(ed.).Amsterdam: North-Holland Publishing, 1976.
[8]Bellman, R., “Dynamic Programming, Princeton University Press”, 1957.
[9]Casaubon, J. I., Cosentino, J. P., and Buep, A. H., “Variation Principle for a Linear Potential”, Turk. J. Phys. 31, pp.117-121.
[10]Chou, C. C, and Wyatt, R. E., “Trajectory Approach to Quantum Wave packet Dynamics: The Correlated Derivative Propagation Method”, Chem. Phys.Lett.500, 2010, pp.342-346.
[11]Chou, C. C., and Wyatt, R. E., “Quantum Trajectories in Complex Space”, Phys. Rev. A 76, 2007, pp.012-115.
[12]Comisar, G. G., “Brownian-Motion Model of Nonrelativistic Quantum Mechanics”, Physical Review, 138, 1965, pp. 1332-1337.
[13]Cushing, J. T., et al. (editors), “Bohmian Mechanics and Quantum Theory: An Appraisal”, Kluwer Academic Publishers”, 1996, pp. 309-319.
[14]Dekker, H. “Classical And Quantum Mechanics of The Damped Harmonic Oscillator”, North-Holland Publishing Company- Amsterdam, 1981.
[15]Faisal, F. H. M. and Schwengelbeck, U., “Unified Theory of Lyapunov Exponents and a Positive Example of Deterministic Quantum Chaos”, Phy. Lett. A 207, 1995, pp. 31-36.
[16]Fürth, R., “Uber einige Beziehungen zwischen klassischer Statistik und. Quantummechanik”, Z. Physik, 81, 1933, pp. 143-162.
[17]Gogolin, C. “Pure State Quantum Statistical Mechanics”, Master thesis, Cornell Unniversity, 2010, pp. 61.
[18]Herschel A. R. , Fernando S. M., and Attila A., “Quantum Fluid Dynamics in the Lagrangian Representation and Applications to Photo Dissociation Problems”, J. Chem. Phys. 51,1961,pp.1253-1969.
[19]Hirschfelder, J .O., Christoph, A. C. and Palke, W. E., “Quantum mechanical streamlines, Part I. square potential barrier”, The Journal of Chemical Physics, 61, 1974, pp. 5435-5455.
[20]Holland, P. R., “The Quantum Theory of Motion”, Cambridge University Press, 1993.
[21]John, M. V., “Probability and complex quantum trajectories”, Annals of Physics, 324, 2009, pp. 220-231.
[22]Kan, K. K. and Griffin, J. J., “Single-particle Schrödinger fluid, Part I. Formulation”, Physical Review C, 15, 1977, pp. 1126-1151.
[23]Kappen, H. J., “Stochastic Optimal Control Theory”, Radboud University, Nijmegen, the Netherlands, 2008.
[24]Kershaw, D., “Theory of Hidden Variables”, Physical Review, Vol. 136, 1964, pp. 1850-1856.
[25]Lewis, H. R., Jr., “Classical And Quantum System With Time-Dependeny Harmonic-Oscillator —Type Hamiltonians”, Physical Review Letters, 1966.
[26]Liberzon, D., “Calculus of Variations and Optimal Control Theory”, Princeton University Press, New Jersey, 2012.
[27]Lopreore, C. L., and Wyatt, R. E., “Quantum Wave Packet Dynamics with Trajectories”, The American Physical Society, 1999, pp.5190-5193.
[28]Mousavi, S. V., ”Quantum-mechanical Effects in a Linear Time-dependent Potential”, Eur. Phys. J. D 57,2010,pp.3-7.
[29]Nelson, E., “Derivation of the Schrödinger Equation from Newtonian Mechanics”, Physical Review, 150, 1966, pp. 1079-1085.
[30]Park, D., “Introduction to the Quantum Theory”, New York, 1992, pp.106-109.
[31]Robinett, R.W., “Quantum and Classical Probability Distribution for Position and Momentum”, AM. J. Phys. 63, 1995, 823-832.
[32]Robinett, R. W., “Visualizing Classical and Quantum Probability Densities for Momentum Using Variational on Familiar One-dimensional Potentials”, Eur. J. Phys. 23, 2002, pp. 165-174.
[33]Robinett, R. W., and Doncheski, M. A., ”Comparing Classical and Quantum Probability Distributions for an Asymmetric Infinite Well”, Eur. J. Phys. 21,2000,pp. 217-228.
[34]Rosenstein, B., “Quantum Mechanics as a Stochastic Process with a U(1) Degree of Freedom”, International Journal of Theoretical Physics, 23, 1984, pp. 147-156.
[35]Schutz, B., “Geometrical Methods of Mathematical Physics”, Cambridge University Press, Cambridge, UK, 1995
[36]Tambade, P. S., “Harmonic oscillator wave functions and probability density plots using spreadsheets”, Lat. Am. J. Phys. Educ. Vol.5, No. 1, 2011.
[37]Wyatt, R. E., “Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics”, Springer, 2005.
[38]Yang, C. D., “A Scientific Realization and Verification of Yin-Yang Theory: Complex-Valued Mechanics”, International Journal of Nonlinear Science, and Numerical Simulation, Vol. 11, 2010, pp. 135-156.
[39]Yang, C. D., “Complex Mechanics, Progress in Nonlinear Science”, Vol. 1, Asian Academic Publisher, Hong Kong, 2010.
[40]Yang, C. D., “Quantum Hamilton Mechanics: Hamilton Equations of Quantum Motion, Origin of Quantum Operators, and Proof of Quantization Axiom”, Annals of Physics, 321, 2006, pp. 2876-2926.
[41]Yang, C. D., “Trajectory Interpretation of the Uncertainty Principle in 1D Systems Using Complex Bohmian Mechanics”, Physics Letters A, 372, 2008, pp. 6240-6253.
[42]Yang, C. D., Chen, H. Y., “Three-Dimensional Nonlinear H∞ Guidance Law and H∞ Based Pursuit – Evasion Game”, International Journal of Robust and Nonlinear Control, Vol. 11, 2001, pp. 109 -129.
[43]Yang, C. D., and Chen, H. Y., “Nonlinear H Robust Guidance Law for Homing Missiles”, AIAA Journal of Guidance, Control, and Dynamics, Vol. 21, 1998, pp. 882-890.
[44]Yang, C. D. and Cheng, L. L., “Optimal Guidance Law in Quantum Mechanics”, Annals of Physics, Vol. 338, 2013, pp.167-185.
[45]Yang, C. D., and Ko, T. L., “Statistical Interpretation of Wave Function”, 2014, pp. 8-23.
[46]Yang, C. D., and Yang, C. C., “Optimal Pure Proportional Navigation for Maneuvering Targets”, IEEE Trans. Aerospace and Electronics, Vol. 33, 1997, pp. 949-957.
[47]Yang, C. D. and Yang, C. C., “A Unified Approach to Proportional Navigation”, IEEE Trans. on Aerospace and Electronics, Vol. 33, 1997, pp. 557-567.
[48]Yang, C. D. and Su, K. C., “Reconstructing Interference Fringes in Slit Experiments by Complex Quantum Trajectories”, International Journal of Quantum Chemistry, Vol. 113, 2013, pp. 1253-1263.
[49]Zarchan, P., “Tactical and Strategic Missile Guidance”, AIAA Press, Washington DC, 1994.