簡易檢索 / 詳目顯示

研究生: 郭澔瑋
Kuo, Hao-Wei
論文名稱: 利用機器學習方法建構Sn-In-X低溫銲料之維氏硬度模型
A machine learning model for Vickers Hardness of Sn-In-X low-temperature solder
指導教授: 劉禹辰
Liu, Yu-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 104
中文關鍵詞: 低溫銲料Sn–In合金硬度機器學習模型
外文關鍵詞: low-temperature solder, Sn-In alloys, hardness, machine learning model
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著軟性電子應用對聚合物基板在低溫下機械強度與可靠性要求日益苛刻,現有低溫銲料常難以在高硬度、高強度與足夠延展性間取得平衡,且合金設計仍仰賴耗時的試錯實驗。Sn–In 合金因其低熔點特性備受矚目,卻普遍存在強度不足的問題。為解決此一瓶頸,本研究首先建立 Sn–In 二元合金的維氏硬度資料庫,並訓練高斯核脊回歸(Gaussian Kernel Ridge Regression)模型進行性能預測,接著應用基因演算法執行逆向設計,以快速篩選出 Sn–In–X(SIX)組成。所篩選出的SIX5合金經由 SEM–EDS、XRD、CALPHAD與 DSC 驗證;SEM–EDS 與 XRD 結果顯示 SIX5 由 β-In₃Sn、γ-InSn₄、Cu₆(In, Sn)₅ 及 BiIn₂ 四相構成,DSC 曲線於 110.25、107.75、90.83 與 57.40 °C 處出現四個吸熱峰,分別對應 γ-InSn₄、Cu₆(In, Sn)₅、β-In₃Sn 及 BiIn₂ 相的依序析出。性能測試證實,SIX5 的硬度達 21.28 HV(約為共晶 Sn–52In 之三倍),拉伸強度達 19.82 MPa(約為 Sn–52In 之兩倍)。此資料驅動設計流程可大幅減少實驗試錯並加速低溫銲料在先進封裝與軟性電子領域的優化。

    As flexible electronics applications impose increasingly stringent requirements on the mechanical strength and reliability of polymer substrates at low temperatures, conventional low-temperature solders often struggle to balance high hardness, high strength, and sufficient ductility, and their alloy design still relies on time-consuming trial-and-error. To overcome this bottleneck, we first established a Vickers hardness database for binary Sn–In alloys and trained a Gaussian Kernel Ridge Regression model for property prediction, then applied a genetic algorithm for inverse design to rapidly screen Sn–In–X (SIX) compositions. The selected SIX5 alloys were validated by SEM–EDS, XRD, CALPHAD, and DSC; SEM–EDS and XRD results showed that SIX5 comprises four phases (β-In₃Sn, γ-InSn₄, Cu₆(In, Sn)₅, and BiIn₂), and DSC curves exhibited four endothermic peaks at 110.25, 107.75, 90.83, and 57.40 °C, corresponding sequentially to the precipitation of γ-InSn₄, Cu₆(In, Sn)₅, β-In₃Sn, and BiIn₂. Performance tests confirmed that SIX5 reaches a hardness of 21.28 HV—approximately three times that of eutectic Sn–52In—and a tensile strength of 19.82 MPa—approximately twice that of Sn–52In. This data-driven design workflow can significantly reduce experimental trial-and-error and accelerate the optimization of low-temperature solders for advanced packaging and flexible electronics.

    CHAPTER I: INTRODUCTION 1 I.1 Flexible electronics 1 I.2 Advanced packaging 3 I.3 Soldering 4 I.4 Use of low-temperature solder in flexible electronics 6 CHAPTER II: LITERATURE REVIEW 8 II.1 Flexible Interconnection Technologies for Electronics 8 II.2 The history of solder 11 II.3 The effect of third element on Sn-In Alloys 21 II.4 Machine learning used in material science 33 II.5 Summary 42 II.6 Objectives of this thesis 42 CHAPTER III: RESEARCH METHODOLOGIES 43 III.1 Sample preparation 43 III.2 Mechanical properties 46 III.3 Machine Learning Method 47 III.4 Materials Analysis 53 CHAPTER IV: RESULTS AND DISCUSSIONS 55 IV.1 Vickers hardness 55 IV.2 Machine learning model 59 IV.3 The designed alloys (SIX alloys) 68 CHAPTER V: CONCLUSIONS 86 References 87

    1. Jiang, S., et al., Flexible metamaterial electronics. Advanced Materials, 2022. 34(52): p. 2200070.
    2. Zardetto, V., et al., Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. Journal of Polymer Science Part B: Polymer Physics, 2011. 49(9): p. 638-648.
    3. Peng, H., et al., Flexible electronic devices based on polymers. Polymer Materials for Energy and Electronic Applications, 2017. 325: p. 325-354.
    4. Amjadi, M., et al., Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials, 2016. 26(11): p. 1678-1698.
    5. Li, X., X. Su, and Y.-H. Liu, Vision-based robotic manipulation of flexible PCBs. IEEE/ASME Transactions on Mechatronics, 2018. 23(6): p. 2739-2749.
    6. Zhang, T., et al., Flexible electronics: Thin silicon die on flexible substrates. IEEE Transactions on Electronics Packaging Manufacturing, 2009. 32(4): p. 291-300.
    7. Rupp, K. and S. Selberherr, The economic limit to Moore's law. IEEE Transactions on Semiconductor Manufacturing, 2010. 24(1): p. 1-4.
    8. Lau, J.H., Recent advances and trends in advanced packaging. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022. 12(2): p. 228-252.
    9. Das Sharma, D. and R.V. Mahajan, Advanced packaging of chiplets for future computing needs. Nature Electronics, 2024. 7(6): p. 425-427.
    10. Tan, W., et al. Effects of warpage on fatigue reliability of solder bumps: Experimental and analytical studies. in 2008 58th Electronic Components and Technology Conference. 2008. IEEE.
    11. Lin, W. and M.W. Lee. PoP/CSP warpage evaluation and viscoelastic modeling. in 2008 58th Electronic Components and Technology Conference. 2008. IEEE.
    12. Liu, C.-H., et al. Silicon Interposer warpage estimation model for 2.5 D IC packaging utilizing passivation film composition and stress tuning. in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). 2015. IEEE.
    13. Lau, J.H. and N.-C. Lee, Assembly and reliability of lead-free solder joints. 2020: Springer.
    14. MacDonald, W.A., et al., Latest advances in substrates for flexible electronics. Journal of the Society for Information Display, 2012. 15(12): p. 1075-1083.
    15. Mei, Z. and J.W. Morris, Characterization of eutectic Sn-Bi solder joints. Journal of Electronic Materials, 1992. 21(6): p. 599-607.
    16. Kim, D.-G. and S.-B. Jung, Interfacial reactions and growth kinetics for intermetallic compound layer between In–48Sn solder and bare Cu substrate. Journal of Alloys and Compounds, 2005. 386(1-2): p. 151-156.
    17. Chuang, T.H., et al., Phase identification and growth kinetics of the intermetallic compounds formed during in-49Sn/Cu soldering reactions. Journal of Electronic Materials, 2002. 31(6): p. 640-645.
    18. Le Han, D., et al., Effect of Cu addition on the microstructure and mechanical properties of In–Sn-based low-temperature alloy. Materials Science and Engineering: A, 2021. 804: p. 140785.
    19. Wang, J., et al., Effect of Zinc Addition on the Microstructure, Thermal and Mechanical Properties of Indium-Tin-x Zinc Alloys. Journal of Electronic Materials, 2019. 48: p. 817-826.
    20. Yeh, M., Effects of indium on the mechanical properties of ternary Sn-In-Ag solders. Metallurgical and Materials Transactions A, 2003. 34: p. 361-365.
    21. Kim, M.-S., et al. Mechanical properties of Sn-Bi bumps on flexible substrate. in 2013 IEEE 63rd Electronic Components and Technology Conference. 2013. IEEE.
    22. Jayaram, V., et al., A review of low-temperature solders in microelectronics packaging. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023. 13(4): p. 570-579.
    23. Zhong, Y., et al., Low-temperature-solderable intermetallic nanoparticles for 3D printable flexible electronics. Acta Materialia, 2019. 162: p. 163-175.
    24. Zhang, P., et al., Effect of nanoparticles addition on the microstructure and properties of lead-free solders: a review. Applied Sciences, 2019. 9(10): p. 2044.
    25. Joo, S.-J., et al., A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. ACS applied materials & interfaces, 2015. 7(10): p. 5674-5684.
    26. Li, X., et al., Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys. Materials Science and Engineering: A, 2017. 684: p. 328-334.
    27. Ma, H. and J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. Journal of materials science, 2009. 44(5): p. 1141-1158.
    28. Cheng, S., C.-M. Huang, and M. Pecht, A review of lead-free solders for electronics applications. Microelectronics Reliability, 2017. 75: p. 77-95.
    29. Vizdal, J., et al., Thermodynamic assessment of the Bi–Sn–Zn system. Calphad, 2007. 31(4): p. 438-448.
    30. Braga, M., et al., The experimental study of the Bi–Sn, Bi–Zn and Bi–Sn–Zn systems. Calphad, 2007. 31(4): p. 468-478.
    31. Lee, B.-J., C.-S. Oh, and J.-H. Shim, Thermodynamic assessments of the Sn-In and Sn-Bi binary systems. Journal of electronic materials, 1996. 25: p. 983-991.
    32. Kattner, U.R. and W.J. Boettinger, On the Sn-Bi-Ag ternary phase diagram. Journal of Electronic Materials, 1994. 23: p. 603-610.
    33. Belyakov, S. and C. Gourlay, Recommended values for the βSn solidus line in Sn-Bi alloys. Thermochimica Acta, 2017. 654: p. 65-69.
    34. Ren, G., I.J. Wilding, and M.N. Collins, Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections. Journal of Alloys and Compounds, 2016. 665: p. 251-260.
    35. El-Daly, A., et al., Design of lead-free candidate alloys for low-temperature soldering applications based on the hypoeutectic Sn–6.5 Zn alloy. Materials & Design (1980-2015), 2014. 56: p. 594-603.
    36. Wei, X., et al., On the advantages of using a hypoeutectic Sn–Zn as lead-free solder material. Materials letters, 2007. 61(3): p. 655-658.
    37. Subramanian, K., K. Suganuma, and K.-S. Kim, Sn-Zn low temperature solder. Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics, 2007: p. 121-127.
    38. Okamoto, H. and T. Massalski, Binary alloy phase diagrams. ASM International, Materials Park, OH, USA, 1990. 12: p. 3528-3531.
    39. Zhao, M., et al., Structure and properties of Sn-Cu lead-free solders in electronics packaging. Science and technology of advanced materials, 2019. 20(1): p. 421-444.
    40. Fürtauer, S., et al., The Cu–Sn phase diagram, Part I: new experimental results. Intermetallics, 2013. 34: p. 142-147.
    41. Liu, X., et al., Experimental investigation and thermodynamic calculation of the phase equilibria in the Cu-Sn and Cu-Sn-Mn systems. Metallurgical and Materials Transactions A, 2004. 35: p. 1641-1654.
    42. Li, D., et al., The Cu–Sn phase diagram part II: New thermodynamic assessment. Intermetallics, 2013. 34: p. 148-158.
    43. Li, S., et al., Corrosion behavior of Sn-based lead-free solder alloys: a review. Journal of Materials Science: Materials in Electronics, 2020. 31: p. 9076-9090.
    44. Suganuma, K., et al., Effect of Ag content on properties of Sn-Ag binary alloy solder. Materials Transactions, 2001. 42(2): p. 286-291.
    45. Choi, S., et al., Thermomechanical fatigue behavior of Sn-Ag solder joints. Journal of Electronic Materials, 2000. 29: p. 1249-1257.
    46. Gao, F., T. Takemoto, and H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn–3.5 Ag solder and Cu during soldering and annealing. Materials Science and Engineering: A, 2006. 420(1-2): p. 39-46.
    47. Guo, F., et al., Evaluation of creep behavior of near-eutectic Sn–Ag solders containing small amount of alloy additions. Materials Science and Engineering: A, 2003. 351(1-2): p. 190-199.
    48. Tsai, J., et al., A study on the reaction between Cu and Sn3. 5Ag solder doped with small amounts of Ni. Journal of Electronic Materials, 2003. 32: p. 1203-1208.
    49. Chithra, S., K. Malviya, and K. Chattopadhyay, Structural Evolution and Phase Stability of Hume-Rothery Phase in a Mechanically Driven Nanostructured Ag-15 at. pct Sn Alloy. Metallurgical and Materials Transactions A, 2014. 45: p. 1148-1160.
    50. Shnawah, D.A., M.F.M. Sabri, and I.A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectronics reliability, 2012. 52(1): p. 90-99.
    51. Efzan Mhd Noor, E. and A. Singh, Review on the effect of alloying element and nanoparticle additions on the properties of Sn-Ag-Cu solder alloys. Soldering & Surface Mount Technology, 2014. 26(3): p. 147-161.
    52. Gharaibeh, A., et al., Electrochemical corrosion of SAC alloys: a review. Metals, 2020. 10(10): p. 1276.
    53. Liu, Y. and K. Tu, Low melting point solders based on Sn, Bi, and In elements. Materials Today Advances, 2020. 8: p. 100115.
    54. Luo, X., et al., CALPHAD-guided alloy design of Sn–In based solder joints with multiphase structure and their mechanical properties. Materials Science and Engineering: A, 2022. 860: p. 144284.
    55. Altıntas, Y., et al., The measurements of electrical and thermal conductivity variations with temperature and phonon component of the thermal conductivity in Sn–Cd–Sb, Sn–In–Cu, Sn–Ag–Bi and Sn–Bi–Zn alloys. International Journal of Thermal Sciences, 2016. 100: p. 1-9.
    56. Lin, S.-K., et al., Liquidus projection and solidification of the Sn-In-Cu ternary alloys. Journal of electronic materials, 2008. 37: p. 498-506.
    57. Lin, S.-k., et al., 250° C isothermal section of ternary Sn-In-Cu phase equilibria. Journal of Materials Research, 2009. 24(8): p. 2628-2637.
    58. Le Han, D., et al., Microstructure and mechanical properties of the In–48Sn–x Ag low-temperature alloy. Journal of Materials Science, 2020. 55: p. 10824-10832.
    59. Chen, S.-w., et al., Sn–In–Ag phase equilibria and Sn–In–(Ag)/Ag interfacial reactions. Materials Chemistry and Physics, 2011. 128(3): p. 357-364.
    60. Korhonen, T.-M. and J. Kivilahti, Thermodynamics of the Sn-In-Ag solder system. Journal of electronic materials, 1998. 27: p. 149-158.
    61. Oulfajrite, H., et al., Electrochemical behavior of a new solder material (Sn–In–Ag). Materials Letters, 2003. 57(28): p. 4368-4371.
    62. Chen, S.-w., et al., Interfacial reactions in the Sn–In–Zn/Ag and Sn–In–Zn/Ni couples. Materials Chemistry and Physics, 2012. 132(2-3): p. 481-487.
    63. Lin, S.-K., et al., Effects of zinc on the interfacial reactions of tin–indium solder joints with copper. Journal of materials science, 2014. 49: p. 3805-3815.
    64. Xie, Y., Z.Y. Qiao, and A. Mikula, The Sn-In-Zn system-application of Calphad technique to phase diagram measurement. Calphad, 2001. 25(1): p. 3-10.
    65. Sabbar, A., et al., Evaluation of corrosion behaviour of a new class of Pb‐free solder materials (Sn‐In‐Zn). Materials and corrosion, 2001. 52(4): p. 298-301.
    66. Aksoy, C., et al., Demonstration of better superconducting performance in a solder with low lead content. Superconductor Science and Technology, 2022. 36(1): p. 015007.
    67. Chriašteľová, J. and M. Ožvold, Properties of solders with low melting point. Journal of Alloys and Compounds, 2008. 457(1-2): p. 323-328.
    68. Mousavi, T., et al., Microstructure and superconducting properties of Sn–In and Sn–In–Bi alloys as Pb-free superconducting solders. Superconductor Science and Technology, 2015. 29(1): p. 015012.
    69. Mousavi, T., et al., Phase evolution of superconducting Sn–In–Bi solder alloys. IEEE Transactions on Applied Superconductivity, 2016. 26(3): p. 1-4.
    70. Morgan, D. and R. Jacobs, Opportunities and challenges for machine learning in materials science. Annual Review of Materials Research, 2020. 50(1): p. 71-103.
    71. Gao, C., et al., Innovative materials science via machine learning. Advanced Functional Materials, 2022. 32(1): p. 2108044.
    72. Ward, L., et al., A machine learning approach for engineering bulk metallic glass alloys. Acta Materialia, 2018. 159: p. 102-111.
    73. Liu, Y., et al., Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Materialia, 2020. 195: p. 454-467.
    74. Liu, Y.-c., et al., Exploring effective charge in electromigration using machine learning. MRS Communications, 2019. 9(2): p. 567-575.
    75. Liu, Y.-c., et al., Characterizing the flux effect on the irradiation embrittlement of reactor pressure vessel steels using machine learning. Acta Materialia, 2023. 256: p. 119144.
    76. Liu, Y.-c., et al., Machine learning predictions of irradiation embrittlement in reactor pressure vessel steels. npj Computational Materials, 2022. 8(1): p. 85.
    77. Banda, T., et al., A machine learning model for flank wear prediction in face milling of Inconel 718. The International Journal of Advanced Manufacturing Technology, 2023. 126(3): p. 935-945.
    78. Wei, J., et al., Machine learning in materials science. InfoMat, 2019. 1(3): p. 338-358.
    79. Yi, S. and R. Jones, Machine learning framework for predicting reliability of solder joints. Soldering & Surface Mount Technology, 2020. 32(2): p. 82-92.
    80. Long, X., et al., Machine learning framework for predicting the low cycle fatigue life of lead-free solders. Engineering Failure Analysis, 2023. 148: p. 107228.
    81. Sai, W., G.B. Chai, and N. Srikanth, Fatigue life prediction of GLARE composites using regression tree ensemble‐based machine learning model. Advanced Theory and Simulations, 2020. 3(6): p. 2000048.
    82. Zhang, X.-C., J.-G. Gong, and F.-Z. Xuan, A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions. International Journal of Fatigue, 2021. 148: p. 106236.
    83. Samavatian, V., et al., Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Scientific reports, 2020. 10(1): p. 14821.
    84. Jacobs, R., et al., The Materials Simulation Toolkit for Machine learning (MAST-ML): An automated open source toolkit to accelerate data-driven materials research. Computational Materials Science, 2020. 176: p. 109544.
    85. Liu, Y.-c., et al., Exploring dielectric constant and dissipation factor of LTCC using machine learning. Materials, 2021. 14(19): p. 5784.
    86. Whitley, D., A genetic algorithm tutorial. Statistics and computing, 1994. 4: p. 65-85.
    87. Ren, X.-l., et al., Effects of In addition on microstructure and properties of SAC305 solder. Transactions of Nonferrous Metals Society of China, 2023. 33(11): p. 3427-3438.
    88. Toulfatzis, A.I., G.A. Pantazopoulos, and A.S. Paipetis, Fracture behavior and characterization of lead-free brass alloys for machining applications. Journal of Materials Engineering and Performance, 2014. 23: p. 3193-3206.

    無法下載圖示 校內:2030-08-11公開
    校外:2030-08-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE