| 研究生: |
許文馨 Hsu, Wen-Hsing |
|---|---|
| 論文名稱: |
應用原子力顯微鏡與有限元素法探討神經細胞髓鞘化過程之機械性質 Investigating Mechanical Properties of Axons of Cultured Neurons at Different Myelination Stages by Atomic Force Microscopy and Finite Element Method |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 許旺細胞 、PC-12類神經細胞 、髓鞘 、原子力顯微鏡 、有限元素法 |
| 外文關鍵詞: | Schwann cell, PC-12 neuron-like cell, myelin sheath, atomic force microscopy, finite element method |
| 相關次數: | 點閱:108 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許旺細胞為周邊神經重要的膠質細胞,能形成多層膜之髓鞘包覆神經軸突,髓鞘的力學行為與髓鞘化過程及許多神經病變有關。本研究以力學角度探討活體神經髓鞘於不同培養階段下的機械性質變化。
首先利用許旺細胞與PC-12類神經細胞共同培養出神經髓鞘,再利用原子力顯微鏡做多點壓痕測試,配合Bilodeau彈性模型估測出視楊氏模數,最後對細胞做免疫螢光染色確認髓鞘位置。此外,利用逆向有限元素法擬合實驗數據,並將其結果與Bilodeau模型結果相互驗證。
結果顯示髓鞘隨著培養天數增加而剛性上升,在M-I、M-II與M-III階段其視楊氏模數分別為3.04±0.27 kPa,4.19±0.12 kPa與5.14±0.26 kPa,中後期高於無髓鞘化之PC-12類神經細胞軸突。於有限元素法模擬中將髓鞘視為超彈性材料,所得到的剛性大小趨勢亦為M-III>M-II>M-I,因此推論許旺細胞形成的髓鞘可以保護神經軸突。
Schwann cells play an essential role in peripheral nervous system. They form myelin sheaths wrapping around neuron axons. Many diseases are caused by demyelination. It is believed that mechanical behavior of myelin sheath may be a factor for myelination and demyelination processes. The objective of this study was to investigate mechanical properties of living axons of cultured neurons at different myelination stages.
Myelinated axons were developed from PC-12 cells co-cultured with differentiated Schwann cells. The atomic force microscopy was employed to obtain morphology and multiple force-distance curves of the myelinated axons. Immuno-fluorescence microscopy was also used to validate the formation of myelin sheath. In this study, both Bilodeau model and finite element method were utilized to analyze the experimental relationship between force and indentation depth.
The results showed that the stiffness increased with culturing days. At M-I, M-II and M-III stages, the apparent Young’s modulus of myelin sheath were 3.04±0.27 kPa, 4.19±0.12 kPa and 5.14±0.26 kPa, respectively. As myelin sheath became mature, the apparent Young’s modulus was higher than that of PC-12 cell axons. The results inferred that in addition to increasing conduction velocity, the myelin sheath can protect the axon from damage.
[1] Eroschenko, V.P., DiFiore's Atlas of Histology With Functional Correlations, Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008.
[2] Sunderland, S., Nerves And Nerve Injuries, Churchill Livingstone, 1978.
[3] Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular biology of the cell, 4th ed, Garland Science, 641-643, 2002.
[4] Waxman, S.G. and M.V. Bennett, Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system, Nat New Biol, 238(85), 217-219, 1972.
[5] Berger, R.A., Hand Surgery, Vol. 1. Lippincott Williams & Wilkins, 2004.
[6] Sudarsky, L. and S.L. Hauser, Pathophysiology of the nervous system, Little, Brown, and Company, 1990.
[7] Shy, M.E. and A. Patzko, Axonal Charcot-Marie-Tooth disease, Current Opinion in Neurology, 24(5), 475-483, 2011.
[8] Armati, P., The Biology of Schwann Cells, Cambridge University Press, 37-54, 2007.
[9] Garbay, B., A.M. Heape, F. Sargueil, and C. Cassagne, Myelin synthesis in the peripheral nervous system, Progress in Neurobiology, 61(3), 267-304, 2000.
[10] Scherer, S.S. and E.J. Arroyo, Recent progress on the molecular organization of myelinated axons, Journal of the Peripheral Nervous System, 7(1), 1-12, 2002.
[11] Min, Y., K. Kristiansen, J.M. Boggs, C. Husted, J.A. Zasadzinski, and J. Israeiachvill, Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein, Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3154-3159, 2009.
[12] Corfas, G., M.O. Velardez, C.P. Ko, N. Ratner, and E. Peles, Mechanisms and roles of axon-Schwann cell interactions, Journal of Neuroscience, 24(42), 9250-9260, 2004.
[13] Bunge, R.P., M.B. Bunge, and M. Bates, Movements of the Schwann-cell nucleus implicate progression of the inner (axon-related) Schwann-cell process during myelination, Journal of Cell Biology, 109(1), 273-284, 1989.
[14] Lavdas, A.A. and R. Matsas, Schwann Cell Morphology, in Encyclopedia of Neuroscience, R.S. Larry, Editor. Academic Press, Oxford, 475-484, 2009.
[15] Jessen, K.R. and R. Mirsky, The origin and development of glial cells in peripheral nerves, Nature Reviews Neuroscience, 6(9), 671-682, 2005.
[16] Callizot, N., M. Combes, R. Steinschneider, and P. Poindron, A new long term in vitro model of myelination, Experimental Cell Research, 317(16), 2374-2383, 2011.
[17] Stettner, M., K. Wolffram, A.K. Mausberg, C. Wolf, S. Heikaus, A. Derksen, T. Dehmel, and B.C. Kieseier, A reliable in vitro model for studying peripheral nerve myelination in mouse, Journal of Neuroscience Methods, 214(1), 69-79, 2013.
[18] Greene, L.A. and A.S. Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth-factor, Proceedings of the National Academy of Sciences of the United States of America, 73(7), 2424-2428, 1976.
[19] Ratner, N., L. Glaser, and R.P. Bunge, PC12 cells as a source of neurite-derived cell surface mitogen, which stimulates Schwann cell division, The Journal of Cell Biology, 98(3), 1150-1155, 1984.
[20] Fernandezvalle, C., N. Fregien, P.M. Wood, and M.B. Bunge, Expression of the protein zero myelin gene in axon-related schwann-cells is linked to basal lamina formation, Development, 119(3), 867-880, 1993.
[21] Chan, J.R., T.A. Watkins, J.M. Cosgaya, C.Z. Zhang, L. Chen, L.F. Reichardt, E.M. Shooter, and B.A. Barres, NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes, Neuron, 43(2), 183-191, 2004.
[22] Keilhoff, G., A. Goihl, K. Langnase, H. Fansa, and G. Wolf, Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells, European Journal of Cell Biology, 85(1), 11-24, 2006.
[23] Xu, Y., L. Liu, Y. Li, C. Zhou, F. Xiong, Z. Liu, R. Gu, X. Hou, and C. Zhang, Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro, Brain Research, 1239, 49-55, 2008.
[24] Huang, W.C., J.D. Liao, C.C.K. Lin, and M.S. Ju, Depth-sensing nano-indentation on a myelinated axon at various stages, Nanotechnology, 22(27), 275101-1~8, 2011.
[25] Mofrad, M.R.K. and R.D. Kamm, Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press, 2006.
[26] Ji, B. and G. Bao, Cell and molecular biomechanics: perspectives and challenges, Acta Mechanica Solida Sinica, 24(1), 27-51, 2011.
[27] Morris, V.J., A.R. Kirby, and A.P. Gunning, Atomic force microscopy for biologists, 2 ed, Imperial College Press, 2009.
[28] Johnson, K.L., Contact Mechanics, Cambridge University Press, 1987.
[29] Sneddon, I.N., The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, International Journal of Engineering Science, 3(1), 47-57, 1965.
[30] Fung, Y.C., Biomechanics : Mechanical Properties of Living Tissues, ed. 2, Spring-Verlag, 277-292, 1972.
[31] Bilodeau, G.G., Regular pyramid punch problem, Journal of Applied Mechanics-Transactions of the Asme, 59(3), 519-523, 1992.
[32] Rico, F., P. Roca-Cusachs, N. Gavara, R. Farre, M. Rotger, and D. Navajas, Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips, Physical Review E, 72(2), 021914-1~10, 2005.
[33] Costa, K.D., A.J. Sim, and F.C.P. Yin, Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy, Journal of Biomechanical Engineering-Transactions of the Asme, 128(2), 176-184, 2006.
[34] Radmacher, M., M. Fritz, C.M. Kacher, J.P. Cleveland, and P.K. Hansma, Measuring the viscoelastic properties of human platelets with the atomic force microscope, Biophysical Journal, 70(1), 556-567, 1996.
[35] Radmacher, M., Measuring the elastic properties of biological samples with the AFM, Engineering in Medicine and Biology Magazine, IEEE, 16(2), 47-57, 1997.
[36] Radmacher, M., Measuring the elastic properties of living cells by the atomic force microscope, Atomic Force Microscopy in Cell Biology, 68, 67-90, 2002.
[37] 張嘉峰, 應用原子力顯微術於PC-12類神經細胞之生物力學研究, 國立成功大學機械工程研究所碩士論文, 2006.
[38] 馮俊雄, 應用原子力顯微鏡與免疫螢光染色法探討PC-12類神經細胞年彈力學性質, 國立成功大學機械工程研究所碩士論文, 2007.
[39] 藍宏銘, 原子力顯微鏡於PC-12類神經細胞軸突再生研究, 國立成功大學機械工程研究所碩士論文, 2008.
[40] Lu, L., S.J. Oswald, H. Ngu, and F.C.P. Yin, Mechanical Properties of Actin Stress Fibers in Living Cells, Biophysical Journal, 95(12), 6060-6071, 2008.
[41] 劉孟璋, 以原子力顯微鏡量測生命材料機械性質之研究-活體細胞的驗證實例, 國立成功大學機械工程研究所碩士論文, 2008.
[42] Chen, R.-J., C.-C.K. Lin, and M.-S. Ju, Quasi-linear viscoelastic properties of PC-12 neuron-like cells measured using atomic force microscopy, Journal of the Chinese Institute of Engineers, 34(3), 325-335, 2011.
[43] Chang, C.-T., C.-C.K. Lin, and M.S. Ju, Morphology and ultrastructure-related local mechanical properties of PC-12 cells studied by integrating atomic force microscopy and immunofluorescence imaging, Journal of Mechanics in Medicine and Biology, 12(05), 1250032-1~21, 2012.
[44] Chang, C.-T., C.-C.K. Lin, and M.-S. Ju, Combined atomic force and fluorescence microscopies to measure subcellular mechanical properties of live cells, Journal of Mechanics in Medicine and Biology, 0(0), 1350057-1~15, 2013.
[45] Heredia, A., C.C. Bui, U. Suter, P. Young, and T.E. Schäffer, AFM combines functional and morphological analysis of peripheral myelinated and demyelinated nerve fibers, NeuroImage, 37(4), 1218-1226, 2007.
[46] 范雅雯, 具髓鞘神經纖維織原子力顯微鏡壓痕測試及有限元素分析, 國立成功大學機械工程研究所碩士論文, 2013.
[47] Costa, K.D. and F.C.P. Yin, Analysis of indentation: Implications for measuring mechanical properties with atomic force microscopy, Journal of Biomechanical Engineering-Transactions of the Asme, 121(5), 462-471, 1999.
[48] Charras, G.T., P.P. Lehenkari, and M.A. Horton, Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions, Ultramicroscopy, 86(1-2), 85-95, 2001.
[49] Charras, G.T. and M.A. Horton, Determination of cellular strains by combined atomic force microscopy and finite element modeling, Biophysical Journal, 83(2), 858-879, 2002.
[50] Unnikrishnan, G.U., V.U. Unnikrishnan, and J.N. Reddy, Constitutive Material Modeling of Cell: A Micromechanics Approach, Journal of Biomechanical Engineering, 129(3), 315-323, 2007.
[51] Radmacher, M., M. Fritz, and P.K. Hansma, Imaging soft samples with the atomic-force microscope - gelatin in water and propanol, Biophysical Journal, 69(1), 264-270, 1995.
[52] Casuso, I., F. Rico, and S. Scheuring, Biological AFM: where we come from - where we are - where we may go, Journal of Molecular Recognition, 24(3), 406-413, 2011.
[53] NANOSENSORS, http://www.nanosensors.com/.
[54] Crick, S.L. and F.C.P. Yin, Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point, Biomechanics and Modeling in Mechanobiology, 6(3), 199-210, 2007.
[55] ABAQUS User's Manual Version 6.9, ABAQUS Inc., 2010.
[56] 張正道, 周邊神經細胞與許旺細胞個別及共培養之生物力學研究, 國立成功大學機械工程研究所博士論文, 2013.
[57] Wang, H., B.E. Layton, and A.M. Sastry, Nerve collagens from diabetic and nondiabetic Sprague-Dawley and biobreeding rats: an atomic force microscopy study, Diabetes-Metabolism Research and Reviews, 19(4), 288-298, 2003.