| 研究生: |
羅凱鴻 Lo, Kai-Hung |
|---|---|
| 論文名稱: |
以半導體雷射週期一非線性動態進行全光學的微波產生與穩定 Photonic Microwave Generation and Stabilization Using Period-One Nonlinear Dynamics of Semiconductor Lasers |
| 指導教授: |
黃勝廣
Hwang, Sheng-Kwang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 半導體雷射 、週期一非線性動態 、光注入雷射系統 、光回饋雷射系統 |
| 外文關鍵詞: | semiconductor laser, nonlinear period-one laser dynamics, optical injection, optical feedback |
| 相關次數: | 點閱:96 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是研究半導體雷射遭受光注入與光回饋且操作在週期一非線性動態的物理特性,並觀察在不同操作條件下的微波頻率與微波訊號品質。由於週期一非線性動態具有以全光式產生光載微波訊號的特性,並且其微波頻率以及調制深度可藉由改變半導體雷射的操作條件而調整,因此對於全光式光訊號產生以及微波訊號處理有很重要的應用。本論文主要以光注入半導體雷射以及光回饋半導體雷射兩種方式,使半導體雷射激發出週期一非線性動態。雖然此兩種方式皆不需要任何高頻的電子元件來產生微波,但其微波品質受到雷射本身雜訊的影響,這將限制通訊系統的傳輸品質。本研究利用光回饋的方式將此兩種方式產生的週期一動態優化,可將雜訊抑制到原來的百分之一以下,甚至也可透過外加的光回饋將微波頻率調整到原來的兩倍以上。
In this dissertation, the characteristics of P1 dynamics, which include microwave noise and microwave frequency, using semiconductor lasers subject to optical injection and optical feedback are investigated. By using P1 dynamics, many applications, such as all-optical signal and microwave processing, can be achieved without any electronic components owing to the all-optical generation of microwave. However, on the account of intrinsic laser noise, the noise quality of P1 dynamics limits the applications. By introducing the part of laser output back to the laser, the noise quality can be improved by operated conditions. The noise quality can be optimized even to two orders of magnitude. Besides, the microwave frequency can be changed up the two times.
[1] S. Kumar and S. Shukla, Concepts and Applications of MICROWAVE ENGINEERING. PHI Learning, 2014.
[2] C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, "Key Microwave Photonics Technologies for Next-Generation Cloud-Based Radio access Networks," Journal of Lightwave Technology, vol. 32, no. 20, pp. 3452-3460, Oct 15 2014.
[3] J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, "A Monolithic Integrated Photonic Microwave Filter," Nat Photon, Article vol. 11, no. 2, pp. 124-129, 2017.
[4] J. Capmany and D. Novak, "Microwave Photonics Combines Two Worlds," Nat Photon, 10.1038/nphoton.2007.89 vol. 1, no. 6, pp. 319-330, 2007.
[5] J. Yao, "Microwave Photonics," Journal of Lightwave Technology, vol. 27, no. 3, pp. 314-335, 2009.
[6] A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, "All-Optical Signal Processing," Journal of Lightwave Technology, vol. 32, no. 4, pp. 660-680, 2014.
[7] M. Saruwatari, "All-Optical Signal Processing for Terabit/Second Optical Transmission," IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1363-1374, 2000.
[8] H. J. Song and J. I. Song, "Simultaneous All-Optical Frequency Downconversion Technique Utilizing an SOA-MZI for WDM Radio over Fiber (RoF) Applications," Journal of Lightwave Technology, vol. 24, no. 8, pp. 3028-3034, 2006.
[9] C. Bohemond, T. Rampone, and A. Sharaiha, "Performances of a Photonic Microwave Mixer Based on Cross-Gain Modulation in a Semiconductor Optical Amplifier," Journal of Lightwave Technology, vol. 29, no. 16, pp. 2402-2409, 2011.
[10] E. H. W. Chan and R. A. Minasian, "Microwave Photonic Downconverter with High Conversion Efficiency," Journal of Lightwave Technology, vol. 30, no. 23, pp. 3580-3585, 2012.
[11] M. Jinno and T. Matsumoto, "Optical Tank Circuits used for All-Optical Timing Recovery," IEEE Journal of Quantum Electronics, vol. 28, no. 4, pp. 895-900, 1992.
[12] M. Jinno and T. Matsumoto, "All-Optical Timing Extraction using a 1.5 μm Self Pulsating Multielectrode DFB LD," Electronics Letters, vol. 24, no. 23, pp. 1426-1427, 1988.
[13] K. Takayama, K. Habara, and A. Himeno, "High-Frequency Operation of an All-Optical Synchronization Circuit," in Photonic Switching II: Proceedings of the International Topical Meeting, Kobe, Japan, April 12–14, 1990, K. Tada and H. S. Hinton, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 374-377, 1990.
[14] C. Chen et al., "Amplified Feedback DFB Laser for 40Gb/s All-Optical Clock Recovery," Optics Communications, vol. 284, no. 24, pp. 5613-5617, 2011.
[15] K. Satoki, T. Hideyiko, S. Masatoshi, and K. Tsutomu, "Ultrahigh-Speed Clock Recovery Circuit using a Traveling-Wave Laser Diode Amplifier as a 50 GHz Phase Detector," in Optical Amplifiers and Their Applications, Yokohama, vol. 14, p. PD5: Optical Society of America, 1993.
[16] O. Kamatani and S. Kawanishi, "Prescaled Timing Extraction from 400 Gb/s Optical Signal Using a Phase Lock Loop Based on Four-Wave-Mixing in a Laser Diode Amplifier," IEEE Photonics Technology Letters, vol. 8, no. 8, pp. 1094-1096, 1996.
[17] Z. Qingling and J. Li, "Rain Attenuation in Millimeter Wave Ranges," in 2006 7th International Symposium on Antennas, Propagation & EM Theory, pp. 1-4, 2006.
[18] P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, and B. N. Ellison, "High-Purity Millimetre-Wave Photonic Local Oscillator Generation and Delivery," in MWP 2003 Proceedings. International Topical Meeting on Microwave Photonics, 2003., pp. 189-192, 2003.
[19] S. C. Chan and J. M. Liu, "Microwave Frequency Division and Multiplication using an Optically Injected Semiconductor Laser," IEEE Journal of Quantum Electronics, vol. 41, no. 9, pp. 1142-1147, 2005.
[20] K. Sato, "Semiconductor Light Sources for 40-Gb/s Transmission Systems," Journal of Lightwave Technology, vol. 20, no. 12, pp. 2035-2043, 2002.
[21] T. Ido, S. Tanaka, M. Suzuki, M. Koizumi, H. Sano, and H. Inoue, "Ultra-High-Speed Multiple-Quantum-Well Electro-Absorption Optical Modulators with Integrated Waveguides," Journal of Lightwave Technology, vol. 14, no. 9, pp. 2026-2034, 1996.
[22] L. N. Langley et al., "Packaged Semiconductor Laser Optical Phase-Locked Loop (OPLL) for Photonic Generation, Processing and Transmission of Microwave Signals," IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 7, pp. 1257-1264, 1999.
[23] K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, "Repetition-Frequency-Tunable Mode-Locked Surface Emitting Semiconductor Laser between 2.78 and 7.87 GHz," Optics Express, vol. 19, no. 23, pp. 23453-23459, 2011.
[24] X. F. Chen, Z. C. Deng, and J. P. Yao, "Photonic Generation of Microwave Signal using a Dual-Wavelength Single-Longitudinal-Mode Fiber Ring Laser," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 2, pp. 804-809, 2006.
[25] U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, "Multifunctional Fiber-Optic Microwave Links Based on Remote Heterodyne Detection," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 5, pp. 458-468, 1998.
[26] F. Li and A. S. Helmy, "Gigahertz to Terahertz Tunable All-Optical Single-Side-Band Microwave Generation via Semiconductor Optical Amplifier Gain Engineering," Optics Letters, vol. 38, no. 22, pp. 4542-4545, 2013.
[27] G. Carpintero et al., "95 GHz Millimeter Wave Signal Generation using an Arrayed Waveguide Grating Dual Wavelength Semiconductor Laser," Optics Letters, vol. 37, no. 17, pp. 3657-3659, 2012.
[28] L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, "Microwave Signal Generation with Injection-Locked Laser Diodes," Electronics Letters, vol. 19, no. 13, pp. 491-493, 1983.
[29] L. Goldberg, A. M. Yurek, H. F. Taylor, and J. F. Weller, "35 GHz Microwave Signal Generation with an Injection-Locked Laser Diode," Electronics Letters, vol. 21, no. 18, pp. 814-815, 1985.
[30] I. Aldaya, G. Campuzano, and G. Castañón, "Analysis of the Modulation Impairments in Optical Sideband Injection Locking for Millimeter-Wave Signal Generation," Optics & Laser Technology, vol. 56, pp. 167-176, 2014.
[31] J. Harrison and A. Mooradian, "Linewidth and Dffset Frequency Locking of External Cavity GaAlAs Lasers," IEEE Journal of Quantum Electronics, vol. 25, no. 6, pp. 1152-1155, 1989.
[32] H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, "Discriminator-Aided Optical Phase-Lock Loop Incorporating a Frequency Down-Conversion Module," IEEE Photonics Technology Letters, vol. 18, no. 22, pp. 2344-2346, 2006.
[33] L. A. Johansson and A. J. Seeds, "Millimeter-Wave Modulated Optical Signal Generation with High Spectral Purity and Wide-Locking Bandwidth using a Fiber-Integrated Optical Injection Phase-Lock Loop," IEEE Photonics Technology Letters, vol. 12, no. 6, pp. 690-692, 2000.
[34] E. Sarailou, A. Ardey, and P. J. Delfyett, "Low Noise Ultrashort Pulse Generation by Direct RF Modulation at 22 GHz From an AlGaInAs Multiple Quantum-Well Laser at 1.55 " IEEE Photonics Technology Letters, vol. 24, no. 17, pp. 1561-1563, 2012.
[35] R. G. Walker, "High-Speed III-V Semiconductor Intensity Modulators," IEEE Journal of Quantum Electronics, vol. 27, no. 3, pp. 654-667, 1991.
[36] J. J. O. Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical Generation of Very Narrow Linewidth Millimetre Wave Signals," Electronics Letters, vol. 28, no. 25, pp. 2309-2311, 1992.
[37] X. S. Yao and L. Maleki, "Optoelectronic Oscillator for Photonic Systems," IEEE Journal of Quantum Electronics, vol. 32, no. 7, pp. 1141-1149, 1996.
[38] X. S. Yao, L. Davis, and L. Maleki, "Coupled Optoelectronic Oscillators for Generating both RF Signal and Optical Pulses," Journal of Lightwave Technology, vol. 18, no. 1, pp. 73-78, 2000.
[39] Y. Jiang et al., "Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection," IEEE Photonics Technology Letters, vol. 25, no. 4, pp. 382-384, 2013.
[40] X. F. Chen, J. P. Yao, and Z. C. Deng, "Ultranarrow Dual-Transmission-Band Fiber Bragg Grating Filter and its Application in a Aual-Wvelength Single-Longitudinal-Mode Fiber Ring Laser," Optics Letters, vol. 30, no. 16, pp. 2068-2070, 2005.
[41] H. Ahmad, F. D. Muhammad, C. H. Pua, and K. Thambiratnam, "Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 5, pp. 166-173, 2014.
[42] B. Sartorius, M. Mohrle, and U. Feiste, "12-64 GHz Continuous Frequency Tuning in Self-Pulsating 1.55μm Multiquantum-Well DFB Lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, no. 2, pp. 535-538, 1995.
[43] K. H. Park et al., "Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure," ETRI Journal, vol. 25, no. 3, pp. 149-155, 2003.
[44] D. H. Kong et al., "A Ridge Width Varied Two-Section Index-Coupled DFB Self-Pulsation Laser with a Wide Continuously Tunable Frequency Range," Journal of Physics D: Applied Physics, vol. 42, no. 12, p. 125105, 2009.
[45] H. F. Liu, S. Arahira, T. Kunii, and Y. Ogawa, "Tuning Characteristics of Monolithic Passively Mode-Locked Distributed Bragg Reflector Semiconductor Lasers," IEEE Journal of Quantum Electronics, vol. 32, no. 11, pp. 1965-1975, 1996.
[46] M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, "InGaAs Quantum-Dot Mode-Locked Laser Diodes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 661-672, 2009.
[47] C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, "RF Linewidth Reduction in a Quantum Dot Passively Mode-Locked Laser subject to External Optical Feedback," Applied Physics Letters, vol. 96, no. 5, p. 051118, 2010.
[48] O. Brox et al., "High-Frequency Pulsations in DFB Lasers with Amplified Feedback," IEEE Journal of Quantum Electronics, vol. 39, no. 11, pp. 1381-1387, 2003.
[49] D. S.Yee et al., "Loss-Coupled Distributed-Feedback Lasers with Amplified Optical Feedback for Optical Microwave Generation," Optics Letters, vol. 29, no. 19, pp. 2243-2245, 2004.
[50] A. K. D. Bosco, Y. Akizawa, K. Kanno, A. Uchida, T. Harayama, and K. Yoshimura, "Photonic Integrated Circuits Unveil Crisis-Induced Intermittency," Optics Express, vol. 24, no. 19, pp. 22198-22209, 2016.
[51] S. C. Chan, S. K. Hwang, and J. M. Liu, "Period-One Oscillation for Photonic Microwave Transmission using an Optically Injected Semiconductor Laser," Optics Express, vol. 15, no. 22, pp. 14921-14935, 2007.
[52] S. C. Chan and J. M. Liu, "Tunable Narrow-Linewidth Photonic Microwave Generation using Semiconductor Laser Dynamics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 5, pp. 1025-1032, 2004.
[53] Y. H. Hung and S. K. Hwang, "Photonic Microwave Stabilization for Period-One Nonlinear Dynamics of Semiconductor Lasers using Optical Modulation Sideband Injection Locking," Optics Express, vol. 23, no. 5, pp. 6520-6532, 2015.
[54] T. B. Simpson and F. Doft, "Double-Locked Laser Diode for Microwave Photonics Applications," IEEE Photonics Technology Letters, vol. 11, no. 11, pp. 1476-1478, 1999.
[55] L. Q. Yu, D. Lu, Y. Sun, and L. J. Zhao, "Tunable Photonic Microwave Generation by Directly Modulating a Dual-Wavelength Amplified Feedback Laser," Optics Communications, vol. 345, pp. 57-61, 2015.
[56] B. Pan, D. Lu, L. Zhang, and L. Zhao, "A Widely Tunable Optoelectronic Oscillator Based on Directly Modulated Dual-Mode Laser," IEEE Photonics Journal, vol. 7, no. 6, pp. 1-7, 2015.
[57] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, "Linewidth Sharpening via Polarization-Rotated Feedback in Optically Injected Semiconductor Laser Oscillators," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 4, pp. 1500807-1500807, 2013.
[58] J. P. Zhuang and S. C. Chan, "Tunable Photonic Microwave Generation using Optically Injected Semiconductor Laser Dynamics with Optical Feedback Stabilization," Optics Letters, vol. 38, no. 3, pp. 344-346, 2013.
[59] B. Pan, D. Lu, Y. Sun, L. Q. Yu, L. Zhang, and L. J. Zhao, "Tunable Optical Microwave Generation using Self-Injection Locked Monolithic Dual-Wavelength Amplified Feedback Laser," Optics Letters, vol. 39, no. 22, pp. 6395-6398, 2014.
[60] J. M. Liu, H. F. Chen, and S. Tang, "Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical Communications," in Digital Communications Using Chaos and Nonlinear Dynamics, L. E. Larson, L. S. Tsimring, and J.-M. Liu, Eds. New York, NY: Springer New York, 2006, pp. 285-340.
[61] G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, Second edition ed. New York : Van Nostrand Reinhold, c1993., 1994.
[62] M. Yamada, "Transverse and Longitudinal Mode Control in Semiconductor Injection Lasers," IEEE Journal of Quantum Electronics, vol. 19, no. 9, pp. 1365 - 1380, 1983.
[63] S. K. Hwang and J. M. Liu, "Dynamical Characteristics of an Optically Injected Semiconductor Laser," Optics Communications, vol. 183, no. 1, pp. 195-205, 2000.
[64] M. Yamada and Y. Suematsu, "A Condition of Single Longitudinal Mode Operation in Injection Lasers with Index-Guiding Structure," IEEE Journal of Quantum Electronics vol. 15, no. 8, pp. 743 - 749, 1979.
[65] R. F. Kazarinov, C. H. Henry, and R. A. Logan, "Longitudinal Mode Self‐Stabilization in Semiconductor Lasers," Journal of Applied Physics, vol. 53, no. 7, pp. 4631-4644, 1982.
[66] E. W. Weisstein, Lorentzian Function. 2007.
[67] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear Dynamics Induced by External Optical Injection in Semiconductor Lasers," Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, vol. 9, no. 5, p. 765, 1997.
[68] S. K. Hwang, J. M. Liu, and J. K. White, "Characteristics of Period-One Oscillations in Semiconductor Lasers subject to Optical Injection," IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 5, pp. 974 - 981, 2004.
[69] S. K. Hwang and D. H. Liang, "Effects of Linewidth Enhancement Factor on Period-One Oscillations of Optically Injected Semiconductor Lasers," Applied Physics Letters, vol. 89, no. 6, p. 061120, 2006.
[70] A. Murakami, K. Kawashima, and K. Atsuki, "Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection," IEEE Journal of Quantum Electronics, vol. 39, no. 10, pp. 1196 - 1204, 2003.
[71] S. C. Chan, "Analysis of an Optically Injected Semiconductor Laser for Microwave Generation," IEEE Journal of Quantum Electronics, vol. 46, no. 3, pp. 421 - 428, 2010.
[72] S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, "Photonic Microwave Generation and Transmission using Direct Modulation of Stably Injection-Locked Semiconductor Lasers," Optics Communications, vol. 284, no. 14, pp. 3581-3589, 2011.
[73] S. K. Hwang, H. F. Chen, and C. Y. Lin, "All-Optical Frequency Conversion using Nonlinear Dynamics of Semiconductor Lasers," Optics Letters, vol. 34, no. 6, pp. 812-814, 2009.
[74] C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, "All-Optical Modulation Format Conversion using Nonlinear Dynamics of Semiconductor Lasers." IEEE Journal of Quantum Electronics, vol. 48, no. 11, pp. 1389 - 1396, 2012.
[75] S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-Fiber AM-to-FM Upconversion using an Optically Injected Semiconductor Laser," Optics Letters, vol. 31, no. 15, pp. 2254-2256, 2006.
[76] Y. H. Hung, C. H. Chu, and S. K. Hwang, "Optical Double-Sideband Modulation to Single-Sideband Modulation Conversion using Period-One Nonlinear Dynamics of Semiconductor Lasers for Radio-over-Fiber Links," Optics Letters, vol. 38, no. 9, pp. 1482-1484, 2013.
[77] Y. H. Hung and S. K. Hwang, "Photonic Microwave Amplification for Radio-over-Fiber Links using Period-One Nonlinear Dynamics of Semiconductor Lasers," Optics Letters, vol. 38, no. 17, pp. 3355-3358, 2013.
[78] V. Annovazzi-Lodi, A. Scire, M. Sorel, and S. Donati, "Dynamic Behavior and Locking of a Semiconductor Laser subjected to External Injection," IEEE Journal of Quantum Electronics, vol. 34, no. 12, pp. 2350 - 2357, 1998.
[79] S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, "The Dynamical Complexity of Optically Injected Semiconductor Lasers," Physics Reports, vol. 416, no. 1, pp. 1-128, 2005.
[80] S. Donati and S. K. Hwang, "Chaos and High-Level Dynamics in Coupled Lasers and their Applications," Progress in Quantum Electronics, vol. 36, no. 2, pp. 293-341, 2012.
[81] O. Solgaard and K. Y. Lau, "Optical Feedback Stabilization of the Intensity Oscillations in Ultrahigh-Frequency Passively Modelocked Monolithic Quantum-Well Lasers," IEEE Photonics Technology Letters, vol. 5, no. 11, pp. 1264-1267, 1993.
[82] R. Rosales et al., "InAs/InP Quantum-Dot Passively Mode-Locked Lasers for 1.55-μ m Applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 5, pp. 1292 - 1301, 2011.
[83] C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, and D. Syvridis, "Pulse and Noise Properties of a Two Section Passively Mode-Locked Quantum Dot Laser under Long Delay Feedback," Optics Communications, vol. 313, no. Supplement C, pp. 248-255, 2014.
[84] A. Karsaklian Dal Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and K. Yoshimura, "Cycles of Self-Pulsations in a Photonic Integrated Circuit," Physical Review E, vol. 92, no. 6, p. 062905, 2015.
[85] A. K. D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. i. Uchida, and T. Harayama, "Dynamics Versus Feedback Delay Time in Photonic Integrated Circuits: Mapping the Short Cavity Regime," IEEE Photonics Journal, vol. 9, no. 2, 2017.
[86] R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, "Generation of Ultrahigh-Speed Tunable-Rate Optical Pulses Using Strongly Gain-Coupled Dual-Wavelength DFB Laser Diodes," IEEE Photonics Technology Letters, vol. 11, no. 5, pp. 518 - 520, 1999.
[87] Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, "Self-Pulsation in Multisection Laser Diodes With a DFB Reflector," IEEE Photonics Technology Letters, vol. 18, no. 4, pp. 622 - 624, 2006.
[88] Y. A. Leem, D. C. l. Kim, E. Sim, S. B. Kim, H. Ko, and K. H. Park, "The Characterization of All-Optical 3R Regeneration Based on InP-Related Semiconductor Optical Devices," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 4, pp. 726 - 735, 2006.
[89] M. Sciamanna, P. Mégret, and M. Blondel, "Hopf Bifurcation Cascade in Small-alpha Laser Diodes subject to Optical Feedback," Physical Review E, vol. 69, no. 4, p. 046209, 2004.
[90] M. Wolfrum and D. Turaev, "Instabilities of Lasers with Moderately Delayed Optical Feedback," Optics Communications, vol. 212, no. 1, pp. 127-138, 2002.
[91] L. Yu, Y. Li, J. Zang, D. Lu, B. Pan, and L. Zhao, "All-Optical Clock Recovery for 40 Gbaud NRZ-QPSK Signals using Amplified Feedback DFB Laser Diode," Chinese Optics Letters, vol. 12, no. 8, p. 081402, 2014.
[92] D. S. Yee et al., "Widely Frequency-Tunable Amplified Feedback Lasers for 10-GHz Optical Pulsation," IEEE Photonics Technology Letters vol. 17, no. 6, pp. 1151 - 1153, 2005.