簡易檢索 / 詳目顯示

研究生: 游家豪
You, Jia-Hao
論文名稱: 跳蛛眼角膜奈米結構之生物光學研究
Biological optics of corneal nanostructures of jumping spiders
指導教授: 邱慈暉
Chiou, Tsyr-Huei
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 27
中文關鍵詞: 跳蛛眼角膜反射光譜角膜乳突陣列原子力顯微鏡
外文關鍵詞: jumping spider, cornea, reflectance spectra, corneal nipple array, AFM
相關次數: 點閱:69下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 跳蛛以其優秀的視覺,引導牠能夠做出精準快速的獵食動作,這正是牠們與其他蜘蛛最大的區別,而優秀且獨特的視覺系統也是許多科學家研究的對象。跳蛛的一對主眼與三對次眼的胚胎發育過程與內部生理構造皆不相同,對跳蛛行為的支持上也扮演著不同的角色,然而,眼角膜的結構與功能卻是較少被提及的。由肉眼觀察某些跳蛛物種發現主眼和次眼呈現不同的顏色,也存在著種間差異,因此,本研究想要了解跳蛛主眼(又可被稱前中眼)與三對次眼中的前側眼的眼角膜反射光譜的差異性。
    另外,角膜表面乳突陣列(corneal nipple array)為大多數節肢動物眼角膜表面所具有的奈米級結構,角膜乳突陣列提供多種功能,其中之一就是影響光線進入角膜時的反、折射率,而已有應用物理學的研究證實了不同尺寸的奈米結構的確會改變反射光譜的組成,因此,本研究想要了解跳蛛的眼角膜表面奈米結構是否與其反射光譜的差異有關。
    結果顯示某些跳蛛前中眼(anterior medial eyes, AMEs)和前側眼(anterior lateral eyes, ALEs)的反射光譜在可見光波段內的最高反射波峰有顯著的差異,AMEs的反射光譜呈現多元的種間差異,最高反射波峰在短、中、長波段皆有,而ALEs的最高反射率波峰則通通位於中波長波段。眼角膜表面結構在AMEs和ALEs也有所不同,AMEs的表面溝槽較ALEs來的矮小,且同樣有種間差異的存在。
    本研究顯示了跳蛛AMEs與ALEs的眼角膜反射光譜與表面奈米結構的多元性與種間差異,這結果暗示了眼角膜對於跳蛛來說可能存在著某種潛在功能,可能能夠提供跳蛛在不同環境下有不同的優勢。然而,利用應用物理或數學模型等來提供更多證據來釐清兩者之間的關聯性。

    The anterior medial eyes (AMEs) and the anterior lateral eyes (ALEs) are two of the four pairs of eyes, which are located at the front of the cephalothorax of jumping spiders (Araneae: Salticidae). The development process, physiological structures, and practical functions of these two types of eyes are well studied (Land, 1985a). The transmittance of corneas of jumping spiders might have interspecies differences (Hu et al., 2012). However, the mechanisms behind such differences remained unclear. Here we show corneal reflectance spectra and nanostructures of AMEs and ALEs of five salticid species. Similar to transmittance spectra, the reflectance spectra of AMEs’ corneas also vary among species. In contrast, the spectral reflectances of ALEs’ corneas show similar peaks at around middle-wavelengths (~560 nm). Parallel nano-grooves are found in all of the corneal surfaces, but the grooves of AMEs are significantly narrower and shallower than those of ALEs. In addition, we also find there are interspecies variations in grooves’ dimensions on both AMEs and ALEs. Our results demonstrate the diversity of corneal spectra and nanostructures not only between two types of eyes but also between species. That is to say the corneas of jumping spiders may have some hidden functions. More evidences on applied physics or mathematics should confirm the relationships, if any, between corneal reflectance spectra and dimensions of nanostructures.

    目錄 中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 表目錄 VII 圖目錄 VIII 一、 前言 1 1.1 跳蛛及其視覺系統介紹 1 1.2 角膜乳突陣列(CORNEAL NIPPLE ARRAY) 2 1.3 研究動機與目的 3 二、 材料與方法 5 2.1 研究對象 5 2.2 跳蛛棲息環境光譜測量 5 2.3 眼角膜反射光譜測量 5 2.4 玻璃珠反射光譜與眼角膜反射光譜標準化處理 6 2.4 原子力顯微鏡(ATOMIC FORCE MICROSCOPE, AFM) 6 2.5 眼角膜表面奈米結構分析 7 三、 實驗結果 8 3.1 跳蛛棲息環境光譜 8 3.2 跳蛛眼角膜反射光譜 8 3.3 跳蛛眼角膜奈米結構 9 四、 討論 10 4.1 跳蛛眼角膜反射光譜 10 4.2 跳蛛眼角膜奈米結構 10 4.3 跳蛛眼角膜反射光譜的生態意義 12 五、 結論 14 表目錄 表一、跳蛛樣本採集地點、眼角膜之最大反射率波長、表面奈米結構係數之比較 18 圖目錄 圖一、跳蛛採集環境照 19 圖二、跳蛛眼角膜反射光譜測量之實驗設置示意圖 20 圖三、五種跳蛛眼睛 21 圖四、不同尺寸的透明玻璃珠反射率 22 圖五、跳蛛棲息環境光譜 23 圖六、跳蛛眼角膜反射光譜 24 圖七、跳蛛AMES的AFM 2D掃描圖 25 圖八、跳蛛ALES的AFM 2D掃描圖 26 圖九、跳蛛眼角膜表面溝槽係數 27

    Bao, Y. H. and Peng, X. J. (2002). Six new species of jumping spiders (Araneae : Salticidae) from Hui-Sun Experimental Forest Station, Taiwan. Zoological Studies 41, 403-411.
    Bernhard, C. G. (1965). The insect corneal nipple array. A biological, broad-band impedance transformer that acts as an antireflection coating. Acta physiol. scand. 63, 1-79.
    Bernhard, C. G., Gemne, G. and Sallstro.J. (1970). Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Zeitschrift für vergleichende Physiologie 67, 1-&.
    Bernhard, C. G. and Miller, W. H. (1962). A corneal nipple pattern in insect compound eyes. Acta Physiol Scand 56, 385-6.
    Blagodatski, A., Kryuchkov, M., Sergeev, A., Klimov, A. A., Shcherbakov, M. R., Enin, G. A. and Katanaev, V. L. (2014). Under- and over-water halves of Gyrinidae beetle eyes harbor different corneal nanocoatings providing adaptation to the water and air environments. Scientific Reports 4.
    Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y. and Katanaev, V. L. (2015). Diverse set of turing nanopatterns coat corneae across insect lineages. Proc Natl Acad Sci U S A 112, 10750-5.
    Boden, S. A. and Bagnall, D. M. (2008). Tunable reflection minima of nanostructured antireflective surfaces. Applied Physics Letters 93.
    Brooks, C. W. and Borish, I. M. (2007). absorptive lenses. In System for ophthalmic dispensing, pp. 526-568. St. Louis, MO: Butterworth Heinemann.
    Duelli, P. (1978). Movement detection in posterolateral eyes of jumping spiders (Evarcha-Arcuata, Salticidae). Journal of Comparative Physiology 124, 15-26.
    Foelix, R. F. (2011). Biology of spiders. Oxford: Oxford University Press.
    Fowles, G. R. (1975). Introduction to modern optics: Courier Corporation.
    Harland, D. P., Li, D. and Jackson, R. R. (2012). How jumping spiders see the world. In How animals see the world : comparative behavior, biology, and evolution of vision, eds. O. F. Lazareva T. Shimizu and E. A. Wasserman), pp. 133-164. Oxford: Oxford University Press.
    Hirose, E., Mayama, H. and Miyauchi, A. (2013). Does the aquatic invertebrate nipple array prevent bubble adhesion? An experiment using nanopillar sheets. Biol Lett 9, 20130552.
    Homann, H. (1928). Beiträge zur Physiologie der Spinnenaugen. Zeitschrift für vergleichende Physiologie 7, 201-268.
    Hu, Z., Liu, F., Xu, X., Chen, Z., Chen, J. and Li, D. (2012). Spectral transmission of the principal-eye corneas of jumping spiders: implications for ultraviolet vision. J Exp Biol 215, 2853-9.
    Hu, Z., Xu, X., Chen, Z., Li, H., Wang, X., Wu, L., Liu, F., Chen, J. and Li, D. (2014). The spectral transmission of non-salticid spider corneas. J Exp Biol 217, 2698-703.
    Kryuchkov, M., Katanaev, V. L., Enin, G. A., Sergeev, A., Timchenko, A. A. and Serdyuk, I. N. (2011). Analysis of Micro- and Nano-Structures of the Corneal Surface of Drosophila and Its Mutants by Atomic Force Microscopy and Optical Diffraction. PLoS One 6.
    Land, M. F. (1969a). Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. Journal of Experimental Biology 51, 471-493.
    Land, M. F. (1969b). Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. Journal of Experimental Biology 51, 443-470.
    Land, M. F. (1972). Stepping movements made by jumping spiders during turns mediated by the lateral eyes. Journal of Experimental Biology 57, 15-40.
    Land, M. F. (1985a). The morphology and optics of spider eyes. In Neurobiology of Arachnids, (ed. F. G. Barth), pp. 53-78. Berlin, Heidelberg: Springer Berlin Heidelberg.
    Land, M. F. (1985b). Short communication: fields of view of the eyes of primitive jumping spiders. Journal of Experimental Biology 119, 381-384.
    Maddison, W. P. (2015). A phylogenetic classification of jumping spiders (Araneae: Salticidae). Journal of Arachnology 43, 231-292.
    Miller, W. H. (1979). Ocular optical filtering. In comparative physiology and evolution of vision in invertebrates: A: Invertebrate photoreceptors, (ed. H. Autrum), pp. 69-143. Berlin, Heidelberg: Springer Berlin Heidelberg.
    Moghal, J., Kobler, J., Sauer, J., Best, J., Gardener, M., Watt, A. A. and Wakefield, G. (2012). High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles. ACS Appl Mater Interfaces 4, 854-9.
    Nagata, T., Koyanagi, M., Tsukamoto, H., Saeki, S., Isono, K., Shichida, Y., Tokunaga, F., Kinoshita, M., Arikawa, K. and Terakita, A. (2012). Depth perception from image defocus in a jumping spider. Science 335, 469-71.
    Parker, A. R., Hegedus, Z. and Watts, R. A. (1998). Solar–absorber antireflector on the eye of an Eocene fly (45 Ma). Proceedings of the Royal Society of London. Series B: Biological Sciences 265, 811-815.
    Peisker, H. and Gorb, S. N. (2010). Always on the bright side of life: anti-adhesive properties of insect ommatidia grating. The Journal of Experimental Biology 213, 3457-3462.
    Rayleigh, L. (1879). On reflection of vibrations at the confines of two media between which the transition is gradual. Proceedings of the London Mathematical Society s1-11, 51-56.
    Stavenga, D. G., Foletti, S., Palasantzas, G. and Arikawa, K. (2006). Light on the moth-eye corneal nipple array of butterflies. Proceedings of the Royal Society B-Biological Sciences 273, 661-667.
    Tan, G., Lee, J.-H., Lan, Y.-H., Wei, M.-K., Peng, L.-H., Cheng, I. C. and Wu, S.-T. (2017). Broadband antireflection film with moth-eye-like structure for flexible display applications. Optica 4.
    Vukusic, P. and Sambles, J. R. (2003). Photonic structures in biology. Nature 424, 852-855.
    Watson, G. S. and Watson, J. A. (2004). Natural nano-structures on insects - possible functions of ordered arrays characterized by atomic force microscopy. Applied Surface Science 235, 139-144.
    Williams, D. S. and Mcintyre, P. (1980). The principal eyes of a jumping spider have a telephoto component. Nature 288, 578-580.
    Wilson, S. J. and Hutley, M. C. (1982). The optical-properties of moth eye antireflection surfaces. Optica Acta 29, 993-1009.
    Zurek, D. B., Cronin, T. W., Taylor, L. A., Byrne, K., Sullivan, M. L. and Morehouse, N. I. (2015). Spectral filtering enables trichromatic vision in colorful jumping spiders. Curr Biol 25, R403-4.
    Zurek, D. B. and Nelson, X. J. (2012a). Hyperacute motion detection by the lateral eyes of jumping spiders. Vision Res 66, 26-30.
    Zurek, D. B. and Nelson, X. J. (2012b). Saccadic tracking of targets mediated by the anterior-lateral eyes of jumping spiders. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology 198, 411-417.
    Zurek, D. B., Taylor, A. J., Evans, C. S. and Nelson, X. J. (2010). The role of the anterior lateral eyes in the vision-based behaviour of jumping spiders. Journal of Experimental Biology 213, 2372-2378.

    下載圖示 校內:2022-08-28公開
    校外:2022-08-28公開
    QR CODE