簡易檢索 / 詳目顯示

研究生: 劉元嵩
Liu, Yuan-Sung
論文名稱: 量子遠態製備之充分必要量子獲益條件於糾纏光子薩格納克干涉儀之驗證
Verification of Necessary and Sufficient Quantum Beneficial Condition of Quantum Remote State Preparation in Entangled Photon Sagnac Interferometer
指導教授: 李哲明
Li, Che-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 45
中文關鍵詞: 量子遠態製備量子同調性量子態斷層掃描薩格納克干涉儀
外文關鍵詞: Quantum remote state preparation, Quantum coherence, Quantum state tomography, Sagnac interferometer
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子效應展示出古典物理學無法解釋的現象,受益於此非古典之特性,因而 進一步利用於量子通訊與量子計算之量子資訊科技中。量子遠程狀態準備(remote state preparation, RSP)在量子資訊任務中扮演著重要角色。Dakic 等人 [N at. P hys. 8, 666 (2012)] 指出,量子不一致性是量子遠程狀態製備不可或缺的資源,而相關研究 對於最佳化後此任務所需的關鍵資源有不同觀點。然而,他們使用最佳化遠程狀態 製備評分的方法,需要量子狀態斷層掃描(quantum state tomography, QST)的能力, 可能無法在實際應用(如量子網絡)中有效評估量子遙態製備的表現。為了解決這 個問題,我們提出了一種新的方法來評估 RSP 任務,它可以應用於任何狀態,並且 僅需要最少的測量設置,無需最佳化遠程狀態製備協議。我們更進一步證明此指標 忠實地描述了資源狀態的特徵,顯示量子同調性在量子遙態製備中充分且必要。在 實驗中,我們使用從偏振-薩格納克干涉儀產生的高保真度不同狀態來實現量子遠程 態製備,顯示我們的指標可以有效評分量子遙態製備任務並描述資源狀態的特性。 我們的方法同時在理論與實驗上證明了實現量子遙態製備所需的量子獲益條件,預 期有助於量子網絡中所需的遠態準備。

    Quantum effects often show phenomena that cannot be explained by classical physics, and tasks that can show quantum beneficial effects have been attracting attention. Remote state preparation (RSP) [1,2] plays an important role in quantum information tasks. B. Dakic [et al. Nat. Phys. 8, 666 (2012)] point out that quantum discord is an indispensable resource for RSP. Several related studies have different views on what kind of resource is the key to the optimized RSP. However, their scoring methods for optimizing RSP require the ability of quantum state tomography and may not be able to score RSP effectively in practical applications such as quantum networking. To tackle this problem, we propose a new method to evaluate the RSP task, which can apply to any state with the minimum measurement settings and does not need to optimize the RSP protocol. Our identifier faithfully describes the characteristics of the resource state and shows that coherence plays a necessary and sufficient role in RSP. Experimentally, we implement RSP with high-quality different source states generated from polarization-Sagnac-interferometer, showing our identifier can effectively score RSP and describe the resource state property. Our method reveals the sufficient and necessary characteristics of the quantum beneficial effect for realizing RSP, which helps implement practical quantum information processing such as state preparation over long-distant quantum networks.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Figures vi Nomenclature vii Chapter 1. Introduction 1 1.1. Background 1 1.2. Motivation 2 1.3. Purpose 3 1.4. Outline. 4 Chapter 2. Theory of Necessary and Sufficient Quantum Beneficial Condition of Remote State Preparation 5 2.1. Remote state preparation and payoff function 5 2.2. Witnessing coherence 9 2.3. Necessary and sufficient quantum beneficial condition of RSP 10 2.4. Practical situation for testing resulting state 13 2.4.1. Different levels of evolution. 13 2.4.2. Cbits cost in QST and witness coherence 15 Chapter3. Demonstration of the Quantum Beneficial Effect of RSP based on the Polarization-Sagnac Interferometer. 20 3.1. Sagnac-based polarization-entangled photon source 20 3.1.1. Experiment setup 21 3.1.2. Quality of Sagnac Polarization Sagnac interferometer 24 3.1.3. Temperature controller module 25 3.1.4. Nonlocality tests and state fidelity 29 3.1.5. Application 31 3.2. Demonstration of the quantum necessary and sufficient quantum beneficial condition of RSP 32 3.2.1. Application of payoff function and witness coherence with resource state suffer different intensities of decoherence noise 33 3.2.2. Demonstration of payoff function and coherence witness on different target states lying on the equatorial plane 35 3.2.3. Discussion 37 Chapter 4. Summary and Outlook 40 4.1. Summary 40 4.2. Outlook 40 References 42

    [1]  C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Physical Review Letters, vol. 70, no. 13, p. 1895, 1993. 

    [2]  A.K.Pati, “Minimum classical bit for remote preparation and measurement of a qubit,” Physical Review A, vol. 63, no. 1, p. 014302, 2000. 

    [3]  S. Pogorzalek, K. Fedorov, M. Xu, A. Parra-Rodriguez, M. Sanz, M. Fischer, E. Xie, K. Inomata, Y. Nakamura, E. Solano, et al., “Secure quantum remote state preparation of squeezed microwave states,” Nature Communications, vol. 10, no. 1, p. 2604, 2019. 

    [4]  S. Liu, D. Han, N. Wang, Y. Xiang, F. Sun, M. Wang, Z. Qin, Q. Gong, X. Su, and Q. He, “Experimental demonstration of remotely creating wigner negativity via quantum steering,” Physical Review Letters, vol. 128, no. 20, p. 200401, 2022. 

    [5]  S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nature Photonics, vol. 9, no. 10, pp. 641–652, 2015. 

    [6]  H.-K. Lo, “Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity,” Physical Review A, vol. 62, no. 1, p. 012313, 2000. 

    [7]  X.-B. Chen, Y. Su, G. Xu, Y. Sun, and Y.-X. Yang, “Quantum state secure transmission in network communications,” Information Sciences, vol. 276, pp. 363–376, 2014. 

    [8]  K.S.Chou, J. Z. Blumoff, C.S.Wang, P.C. Reinhold, C.J.Axline, Y.Y.Gao, L. Frunzio, M. Devoret, L. Jiang, and R. Schoelkopf, “Deterministic teleportation of a quantum gate between two logical qubits,” Nature, vol. 561, no. 7723, pp. 368–373, 2018. 

    [9]  A. Parker, J. Wallnöfer, and W. Dür, “Modular architectures for quantum networks,” New Journal of Physics, vol. 20, no. 5, p. 053054, 2018. 

    [10]  S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018. 

    [11]  B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Ve- dral, A. Zeilinger, Č. Brukner et al., “Quantum discord as resource for remote state preparation,” Nature Physics, vol. 8, no. 9, pp. 666–670, 2012. 

    [12]  P. Horodecki, J. Tuziemski, P. Mazurek, and R. Horodecki, “Can communication power of separable correlations exceed that of entanglement resource?,” Physical Review Letters, vol. 112, no. 14, p. 140507, 2014. 

    [13]  S. Kanjilal, A. Khan, C. Jebarathinam, and D. Home, “Remote state preparation using correlations beyond discord,” Physical Review A, vol. 98, no. 6, p. 062320, 2018. 

    [14]  M. Nikaeen, M. Ramezani, and A. Bahrampour, “Optimal exploitation of the resource in remote state preparation,” Physical Review A, vol. 102, no. 1, p. 012416, 2020. 

    [15]  B. J. Falaye, G.-H. Sun, O. Camacho-Nieto, and S.-H. Dong, “Jrsp of three-particle state via three tripartite ghz class in quantum noisy channels,” International Journal of Quantum Information, vol. 14, no. 07, p. 1650034, 2016. 

    [16]  Z. Xu and M. Jiang, “Controlled cyclic joint remote state preparation of arbitrary single-qubit states,” in 2021 40th Chinese Control Conference (CCC), pp. 6307–6311, IEEE, 2021. 

    [17]  N. Chen, D.-X. Quan, F.-F. Xu, H. Yang, and C.-X. Pei, “Deterministic joint remote state preparation of arbitrary single-and two-qubit states,” Chinese Physics B, vol. 24, no. 10, p. 100307, 2015. 

    [18]  X.-W. Zha, X.-Y. Yu, and Y. Cao, “Tripartite controlled remote state preparation via a seven-qubit entangled state and three auxiliary particles,” International Journal of Theoretical Physics, vol. 58, no. 1, pp. 282–293, 2019. 

    [19]  S.LiandY.-X.Chen, “Correlated coherence as resource of remote state preparation and quantum teleportation,” arXiv preprint arXiv:1905.02934, 2019. 

    [20]  R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Reviews of Modern Physics, vol. 81, no. 2, p. 865, 2009. 

    [21]  M.-L.Hu, X.Hu, J.Wang, Y.Peng, Y.-R.Zhang and H. Fan, “Quantum coherence and geometric quantum discord,” Physics Reports, vol. 762, pp. 1–100, 2018. 

    [22]  B. Dakić, V. Vedral, and Č. Brukner, “Necessary and sufficient condition for nonzero quantum discord,” Physical Review Letters, vol. 105, no. 19, p. 190502, 2010. 

    [23]  M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu, “Efficient quantum state tomography,” Nature Communications, vol. 1, no. 1, p. 149, 2010. 

    [24]  A. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium: Quantum coherence as a resource,” Reviews of Modern Physics, vol. 89, no. 4, p. 041003, 2017. 

    [25]  T. Kim, M. Fiorentino, and F. N. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Physical Review A, vol. 73, no. 1, p. 012316, 2006. 

    [26]  Č.Brukner, M.Żukowski, J.-W.Pan, and Zeilinger, “Bell inequalities and quantum communication complexity,” Physical Review Letters, vol. 92, no. 12, p. 127901, 2004. 

    [27]  J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, no. 2, p. 777, 2012. 

    [28]  V. Giovannetti, S.Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science, vol. 306, no. 5700, pp. 1330–1336, 2004. 

    [29]  T. Brandes, “Coherent and collective quantum optical effects in mesoscopic systems,” Physics Reports, vol. 408, no. 5-6, pp. 315–474, 2005. 

    [30]  N. Gisin and R. Thew, “Quantum communication,” Nature Photonics, vol. 1, no. 3, pp. 165–171, 2007. 

    [31]  T. Baumgratz, M.Cramer, and M. B. Plenio, “Quantifying coherence,” Physical Review Letters, vol. 113, no. 14, p. 140401, 2014. 

    [32]  O. Gühne and G. Tóth, “Entanglement detection,” Physics Reports, vol. 474, no. 1-6, pp. 1–75, 2009. 

    [33]  M. Nielsen and I. Chuang, “Quantum computation and quantum information: Cambridge univ Press,” 2000. 

    [34]  C.-M.Li, K.Chen, A. Reingruber, Y.-N.Chen and J.-W.Pan, “Verifying genuine high-order entanglement,” Physical Review Letters, vol. 105, no. 21, p. 210504, 2010. 

    [35]  C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, and F. Nori, “Witnessing quantum coherence: from solid-state to biological systems,” Scientific Reports, vol. 2, no. 1, p. 885, 2012. 

    [36]  J. Tellinghuisen, “Statistical error propagation,” The Journal of Physical Chemistry A, vol. 105, no. 15, pp. 3917–3921, 2001. 

    [37]  P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, no. 24, p. 4337, 1995. 

    [38]  C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “Generation of correlated photon pairs in type-ii parametric down conversion—revisited,” Journal of Modern Optics, vol. 48, no. 13, pp. 1997–2007, 2001. 

    [39]  Y. Shih, “Entangled biphoton source-property and preparation,” Reports on Progress in Physics, vol. 66, no. 6, p. 1009, 2003. 

    [40]  M. H. Rubin, D. N. Klyshko, Y. Shih, and A. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Physical Review A, vol. 50, no. 6, p. 5122, 1994. 

    [41]  A.Motazedifard, S.A.Madani, J.J.Dashkasan, and N.S.Vayaghan, “Nonlocalrealism tests and quantum state tomography in sagnac-based type-ii polarization-entanglement spdc-source,” Heliyon, vol. 7, no. 6, p. e07384, 2021. 

    [42]  H. Chan, “Photonic dynamics and entangled photon source: from identification of experimental non-markovian dynamics to generation of polarization entangled photon source based on sagnac interferometer,” Master’s thesis, 2022. 

    [43]  J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Physical Review Letters, vol. 23, no. 15, p. 880, 1969. 

    [44]  S.-H. Chen, Y.-C. Kao, N. Lambert, F. Nori, and C.-M. Li, “Nonclassical preparation of quantum remote states,” Master’s thesis, 2020. 

    [45]  H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Physical Review Letters, vol. 88, no. 1, p. 017901, 2001. 

    [46]  W. H. Zurek, “Einselection and decoherence from an information theory perspective,” in Quantum Communication, Computing, and Measurement 3, pp. 115–125, Springer, 2002. 

    [47]  L. Henderson and V. Vedral, “Classical, quantum and total correlations,” Journal of Physics A: Mathematical and general, vol. 34, no. 35, p. 6899, 2001. 

    [48]  B. E. Saleh and M. C. Teich, Fundamentals of photonics. John Wiley & Sons, 2019. 

    [49]  Y.-F.Huang, B.-H.Liu, L.Peng, Y.-H.Li, L.Li, C.-F.Li, and G.-C.Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nature Communications, vol. 2, no. 1, p. 546, 2011. 

    [50]  J.-D. Bancal and J.-D. Bancal, “Device-independent witnesses of genuine multipartite entanglement,” On the Device-Independent Approach to Quantum Physics: Advances in Quantum Nonlocality and Multipartite Entanglement Detection, pp. 73–80, 2014. 

    [51]  D. Cavalcanti, P. Skrzypczyk, G. Aguilar, R. V. Nery, P. S. Ribeiro, and S. Walborn, “Detection of entanglement in asymmetric quantum networks and multipartite quantum steering,” Nature Communications, vol. 6, no. 1, p. 7941, 2015. 

    [52]  W. McCutcheon, A.Pappa, B.A.Bell, A.Mcmillan, A. Chailloux, T.Lawson, M. Mafu, D. Markham, E. Diamanti, I. Kerenidis, et al., “Experimental verification of multipartite entanglement in quantum networks,” Nature Communications, vol. 7, no. 1, p. 13251, 2016. 

    [53]  P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathé, A. Akin, S. Storz, J.-C. Besse, et al., “Deterministic quantum state transfer and re- mote entanglement using microwave photons,” Nature, vol. 558, no. 7709, pp. 264–267, 2018.

    下載圖示 校內:2025-08-27公開
    校外:2025-08-27公開
    QR CODE