| 研究生: |
詹煜梃 Chan, Yu-Ting |
|---|---|
| 論文名稱: |
果蠅卵子生成中核膜蛋白與dysfusion交互作用的遺傳篩選 Genetic screen for nuclear membrane protein that interacts with dysfusion in Drosophila oogenesis |
| 指導教授: |
張純純
Jang, Anna C.-C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 邊境細胞遷移 、JAK/STAT訊號傳遞鏈 、核轉運 |
| 外文關鍵詞: | Drosophila Border cell migration, JAK/STAT signal pathway, dysfusion, Nuclear transport |
| 相關次數: | 點閱:218 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞遷移在個體胚胎發育的過程不可或缺,至今其分子機制仍未完全解析,本研究以黑腹果蠅(Drosophila melanogaster)卵子生成(oogenesis)中的邊境細胞(Border cells)作為研究模型,進行遺傳篩選找出群體細胞遷移相關基因。根據先前研究, JAK / STAT信號傳導途徑強弱決定邊境細胞的數目及遷移,任一傳遞分子發生突變皆導致邊境細胞數目下降及遷移缺陷;另一核蛋白Dysf基因突變時,邊境細胞群異常增加,而過度表現Dysf時不但使邊境細胞發生遷移缺陷、細胞群生成困難,也造成STAT入核比例下降,染色結果也發現,Dysf蛋白表現在核膜上,因為核孔複合物管控大分子物質進出細胞核,可能影響STAT進核,所以本論文主要解析dysf與核孔蛋白之間是否發生交互作用,進而影響JAK/STAT訊號傳導途徑?因此,本論文測試了24種核孔蛋白、9種核轉運蛋白(Impβ)以及2種Ran Binding蛋白共68個突變株,分析過度表現Dysf的前提下,這些突變株是否影響邊境細胞遷移。其中,核孔蛋白Nup153以及Nup98-96,顯著降低遷移失敗比例;而核轉運蛋白Artemis突變,則顯著提升遷移失敗比例,因此根據結果推論dysf可能透過與核孔蛋白Nup153、Nup98-96或轉運蛋白Artemis之間的交互作用,調節STAT的進核。
In embryogenesis, collective cell migration plays an important role but the molecular mechanism has not been fully elucidated. We apply 6~8 migratory cells called border cells that migrate as a group in Drosophila melanogaster oogenesis as a research model to investigate the underline mechanism of group cell migration. In my thesis, I took advantage of forward genetic screen to identify genes which are related with controlling the JAK / STAT signal pathway that is essential to determine the number border cells and persistent migration. Mutations in any JAK/STAT signaling molecule result in a decrease in the number of border cells and lead to migration defect. Gain-of-function in JAK/STAT signaling induces extra migrating border cells. Thus, the level of JAK/STAT signaling should be modulated properly to ensure the correct size of migration cohort. In our lab's previous investigation, a nuclear protein mutation, dysf, extra cluster of border cells were induced. Over-expression of dysf caused not only migration defects but also led to cluster failing to form, which was due to suppression of the nuclear import of STAT. The staining of andi-Dysf found it expression on the nuclear membrane so we hypothesized that Dysf may localize on the nuclear membrane and interact with the nuclear pore complex proteins to control the nucleocytoplasmic transport of nuclear protein to affect the nuclear localization of STAT. Therefore, the main object of this thesis was to analyze whether dysf interacted with nucleoporins to regulate the JAK/STAT pathway. I have screened 68 mutants of 24 nucleoporin genes, 9 nuclear transport proteins (Imp β), and 2 Ran Binding proteins to test which of these affect the motility defect of border cells by overexpression of dysf. Among of them, the nucleoporins Nup153 and Nup98-96 significantly reduce the migration defect. By contrast, importin β, artemis mutant significantly increased the migration defect of border cells. Therefore, we suggest that dysf may interact with the nucleoporins Nup153, Nup98-96 or importin Artemis to regulate the nuclear transport of STAT.
吳榛惟,dysfusion在邊境細胞的功能分析,國立成功大學生物科技研究所碩士論文,2013。
Ashkenazy, H., Erez, E., Martz, E., Pupko, T., and Ben-Tal, N. Consurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research 38, W529-533, 2010.
Bayliss, R., Littlewood, T., and Stewart, M. Structural basis for the interaction between fxfg nucleoporin repeats and importin-beta in nuclear trafficking. Cell 102, 99-108, 2000.
Becker, S., Groner, B., and Muller, C.W. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394, 145-151, 1998.
Bellen, H. J., Levis, R. W., He, Y., Carlson, J. W., Evans-Holm, M., Bae, E., Kim, J., Metaxakis, A., Savakis, C., Schulze, K. L., Hoskins, R. A., and Spradling, A. C. The drosophila gene disruption project: Progress using transposons with distinctive site specificities. Genetics 188, 731-743, 2011.
Binari, R., and Perrimon, N. Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes and Development 8, 300-312, 1994
Brohawn, S. G., Partridge, J. R., Whittle, J. R., and Schwartz, T. U. The nuclear pore complex has entered the atomic age. Structure 17, 1156-1168, 2009.
Brown, S., Hu, N., and Hombría, J. C. Identification of the first invertebrate interleukin jak/stat receptor, the Drosophila gene domeless. Current Biology 11, 1700-1705, 2001.
Carmody, S. R., and Wente, S. R. Mrna nuclear export at a glance. Journal of Cell Science 122, 1933-1937, 2009.
Chang, H. Y., Hou, S. C., Way, T. D., Wong, C. H., and Wang, I. F. Heat-shock protein dysregulation is associated with functional and pathological tdp-43 aggregation. Nature Communications 4, 2757, 2013.
Chen, X., Oh, S. W., Zheng, Z., Chen, H. W., Shin, H. H., and Hou, S. X. Cyclin d-cdk4 and cyclin e-cdk2 regulate the jak/stat signal transduction pathway in Drosophila. Developmental Cell 4, 179-190, 2003.
Chen, X. M., Vinkemeier, U., Zhao, Y. X., Jeruzalmi, D., Darnell, J. E., and Kuriyan, J. Crystal structure of a tyrosine phosphorylated stat-1 dimer bound to DNA. Cell 93, 827-839, 1998.
Chitnis, A. B., Nogare, D. D., and Matsuda, M. Building the posterior lateral line system in zebrafish. Developmental Neurobiology 72, 234-255, 2012.
Cook, A., Bono, F., Jinek, M., and Conti, E. Structural biology of nucleocytoplasmic transport. Annual Review Biochemistry 76, 647-671, 2007.
Couchman, J. R., Lenn, M., and Rees, D. A. Coupling of cytoskeleton functions for fibroblast locomotion. European Journal of Cell Biology 36, 182-194, 1985.
Dearolf, C.R. JAKs and STATs in invertebrate model organisms. Cellular and Molecular Life Sciences 55, 1578-1584, 1999.
Dunn, B. S., Rush, L., Lu, J. Y., and Xu, T. Mutations in the Drosophila tricellular junction protein m6 synergize with ras(v12) to induce apical cell delamination and invasion. Proceeding of the National Academy of Sciences of the United States of America 115, 8358-8363, 2018.
Enenkel, C., Blobel, G., and Rexach, M. Identification of a yeast karyopherin heterodimer that targets import substrate to mammalian nuclear pore complexes. Journal of Biological Chemistry 270, 16499-16502, 1995.
Fontoura, B. M., Blobel, G., and Matunis, M. J. A conserved biogenesis pathway for nucleoporins: Proteolytic processing of a 186-kilodalton precursor generates nup98 and the novel nucleoporin, nup96. Journal of Cell Biology 144, 1097-1112, 1999.
Forbes, A., and Lehmann, R. Cell migration in Drosophila. Current Opinion in Genetics and Development 9, 473-478, 1999.
Franke, W. W., Scheer, U., Krohne, G., and Jarasch, E. D. The nuclear envelope and the architecture of the nuclear periphery. Journal of Cell Biology 91, 39-50, 1981.
Franks, T. M., and Hetzer, M. W. The role of nup98 in transcription regulation in healthy and diseased cells. Trends in Cell Biology 23, 112-117, 2013.
Görlich, D., Prehn, S., Laskey, R. A., and Hartmann, E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79, 767-778, 1994.
Görlich, D., Kostka, S., Kraft, R., Dingwall, C., Laskey, R. A., Hartmann, E., and Prehn, S. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Current Biology 5, 383-392, 1995.
Harrison, D.A. The Jak/STAT pathway. Cold Spring Harbor Perspectives in Biology 4, a011205, 2012.
Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M., and Perrimon, N. Drosophila unpaired encodes a secreted protein that activates the jak signaling pathway. Genes and Developement 12, 3252-3263, 1998.
Hayashi, S., Ito, K., Sado, Y., Taniguchi, M., Akimoto, A., Takeuchi, H., Aigaki, T., Matsuzaki, F., Nakagoshi, H., Tanimura, T., Ueda, R., Uemura, T., Yoshihara, M., and Goto, S. Getdb, a database compiling expression patterns and molecular locations of a collection of gal4 enhancer traps. Genesis 34, 58-61, 2002.
Hedgecock, E.M., Culotti, J.G., Hall, D.H., and Stern, B.D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development 100, 365-382, 1987.
Hou, S.X., Zheng, Z., Chen, X., and Perrimon, N. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Developmental Cell 3, 765-778, 2002.
Hou, X. S., Melnick, M. B., and Perrimon, N. Marelle acts downstream of the Drosophila hop/jak kinase and encodes a protein similar to the mammalian stats. Cell 84, 411-419, 1996.
Hou, X. S., and Perrimon, N. The JAK-STAT pathway in Drosophila. Trends in Genetics 13, 105-110, 1997.
Hughes, S. E., Miller, D. E., Miller, A. L., and Hawley, R. S. Female meiosis: Synapsis, recombination, and segregation in Drosophila melanogaster. Genetics 208, 875-908, 2018.
Jang, A. C., Chang, Y. C., Bai, J., and Montell, D. Border-cell migration requires integration of spatial and temporal signals by the btb protein abrupt. Nature Cell Biology 11, 569-579, 2009.
Jiang, L., and Crews, S. T. The Drosophila dysfusion basic helix-loop-helix (bhlh)-pas gene controls tracheal fusion and levels of the trachealess bhlh-pas protein. Molecular and Cellular Biology 23, 5625-5637, 2003.
Jiang, L., and Crews, S. T. Dysfusion transcriptional control of Drosophila tracheal migration, adhesion, and fusion. Molecular and Cellular Biology 26, 6547-6556, 2006.
Jiang, L., and Crews, S. T. Transcriptional specificity of Drosophila dysfusion and the control of tracheal fusion cell gene expression. The Journal of Biological Chemistry 282, 28659-28668, 2007.
Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A. S., Zilman, A., Peters, R., Rout, M. P., and Chait, B. T. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023-1027, 2009.
Kalverda, B., Pickersgill, H., Shloma, V. V., and Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360-371, 2010.
Kambysellis, M. P., Starmer, T., Smathers, G., and Heed, W.B. Studies of Oogenesis in Natural-Populations of Drosophilidae .2. Significance of Microclimatic Changes on Oogenesis of Drosophila-Mimica. American Naturalist 115, 67-91, 1980.
Kewley, R. J., Whitelaw, M. L., and Chapman-Smith, A. The mammalian basic helix-loop-helix/pas family of transcriptional regulators. The International Journal of Biochemistry and Cell Biology 36, 189-204, 2004.
Kimble, J.E., and White, J.G. On the control of germ cell development in Caenorhabditis elegans. Developmental Bology 81, 208-219, 1981.
Köhler, A., and Hurt, E. Exporting rna from the nucleus to the cytoplasm. Nature Reviews Molecular Cell Biology 8, 761-773, 2007.
Krull, S., Thyberg, J., Björkroth, B., Rackwitz, H. R., and Cordes, V. C. Nucleoporins as components of the nuclear pore complex core structure and tpr as the architectural element of the nuclear basket. Molecular Biology of the Cell 15, 4261-4277, 2004.
Lewin, A. R., Reid, L. E., McMahon, M., Stark, G. R., and Kerr, I. M. Molecular analysis of a human interferon-inducible gene family. European Journal of Biochemistry 199, 417-423, 1991.
Li, J., Xia, F., and Li, W. X. Coactivation of STAT and Ras is required for germ cell proliferation and invasive migration in Drosophila. Developmental Cell 5, 787-798, 2003.
Lin, H., and Spradling, A. C. Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Developmental Biology 159, 140-152, 1993.
Lin, D. H., and Hoelz, A. The Structure of the Nuclear Pore Complex. Annual Review of Biochemistry 88, 725-783, 2019.
Lowe, A. R., Tang, J. H., Yassif, J., Graf, M., Huang, W. Y., Groves, J. T., Weis, K., and Liphardt, J. T. Importin-β modulates the permeability of the nuclear pore complex in a ran-dependent manner. Elife 4, e04052, 2015.
Macara, I. G. Transport into and out of the nucleus. Microbiology and Molecular Biology Reviews 65, 570-594, 2001.
McIntosh, B. E., Hogenesch, J. B., and Bradfield, C. A. Mammalian per-arnt-sim proteins in environmental adaptation. Annual Review of Physiology 72, 625-645, 2010.
McMorrow, I., Bastos, R., Horton, H., and Burke, B. Sequence analysis of a cdna encoding a human nuclear pore complex protein, hnup153. Biochimica et Biophysica Acta-Gene Structure and Expression 1217, 219-223, 1994.
Moroianu, J., Blobel, G., and Radu, A. Nuclear protein import: Ran-gtp dissociates the karyopherin alphabeta heterodimer by displacing alpha from an overlapping binding site on beta. Proceeding of the National Academy of Sciences of the United States of America 93, 7059-7062, 1996.
Moroianu, J., Blobel, G., and Radu, A. Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proceeding of the National Academy of Sciences of the United States of America 92, 2008-2011, 1995.
Ogawa, Y., Miyamoto, Y., Oka, M., and Yoneda, Y. The interaction between importin-α and Nup153 promotes importin-α/β-mediated nuclear import. Traffic 13, 934-946, 2012.
Ooe, N., Saito, K., Mikami, N., Nakatuka, I., and Kaneko, H. Identification of a novel basic helix-loop-helix-pas factor, NXF, reveals a sim2 competitive, positive regulatory role in dendritic-cytoskeleton modulator drebrin gene expression. Molecular and Cellular Biology 24, 608-616, 2004.
Parks, S., and Spradling, A. Spatially Regulated Expression of Chorion Genes during Drosophila Oogenesis. Genes and Development 1, 497-509, 1987.
Pemberton, L. F., and Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187-198, 2005.
Presgraves, D. C., Balagopalan, L., Abmayr, S. M., and Orr, H. A. Adaptive evolution drives divergence of a hybrid inviability gene between two species of drosophila. Nature 423, 715-719, 2003.
Radu, A., Moore, M. S., and Blobel, G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81, 215-222, 1995.
Rørth, P., Szabo, K., and Texido, G. The level of c/ebp protein is critical for cell migration during drosophila oogenesis and is tightly controlled by regulated degradation. Molecular Cell 6, 23-30, 2000.
Rørth, P. A modular misexpression screen in drosophila detecting tissue-specific phenotypes. Proceeding of the National Academy of Sciences of the United States of America 93, 12418-12422, 1996.
Rout, M. P., and Wente, S. R. Pores for thought: Nuclear pore complex proteins. Trends in Cell Biology 4, 357-365, 1994.
Rubin, G. M., Hong, L., Brokstein, P., Evans-Holm, M., Frise, E., Stapleton, M., and Harvey, D. A. A Drosophila complementary DNA resource. Science 287,2222-2224, 2000.
Shulga, N., Mosammaparast, N., Wozniak, R., and Goldfarb, D. S. Yeast nucleoporins involved in passive nuclear envelope permeability. Journal of Cell Biology 149, 1027-1038, 2000.
Silver, D.L., and Montell, D.J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831-841, 2001.
Strambio-De-Castillia, C., Niepel, M., and Rout, M. P. The nuclear pore complex: Bridging nuclear transport and gene regulation. Nature Reviews Molecular Cell Biology 11, 490-501, 2010.
Stuwe, T., Correia, A. R., Lin, D. H., Paduch, M., Lu, V. T., Kossiakoff, A. A., and Hoelz, A. Nuclear pores. Architecture of the nuclear pore complex coat. Science 347, 1148-1152, 2015.
Teddy, J.M., and Kulesa, P.M. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 131, 6141-6151, 2004.
VanKuren, N. W., and Long, M. Gene duplicates resolving sexual conflict rapidly evolved essential gametogenesis functions. Nature Ecology and Evolution 2, 705-712, 2018.
Xi, R., McGregor, J.R., and Harrison, D.A. A gradient of JAK pathway activity patterns the anterior-posterior axis of the follicular epithelium. Developmental Cell 4, 167-177, 2003.
Yan, R., Small, S., Desplan, C., Dearolf, C. R., and Darnell, J. E. Identification of a stat gene that functions in Drosophila development. Cell 84, 421-430, 1996.
Zeidler, M.P., Bach, E.A., and Perrimon, N. The roles of the Drosophila JAK/STAT pathway. Oncogene 19, 2598-2606, 2000.
Zeidler, M. P., Tan, C., Bellaiche, Y., Cherry, S., Häder, S., Gayko, U., and Perrimon, N. Temperature-sensitive control of protein activity by conditionally splicing inteins. Nature Biotechnology 22, 871-876, 2004.
校內:2026-10-12公開