| 研究生: |
李雅堂 Lee, Ya-Tang |
|---|---|
| 論文名稱: |
適合作為染料敏化太陽能電池中光敏化劑的氟取代甜菜紅素之理論計算研究 Theoretical Studies of Fluorine-Substituted Betanidins Used as Sensitizer Candidates for Dye-Sensitized Solar Cells |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 密度泛函理論 、染料敏化太陽能電池 、光敏化劑 、甜菜紅素 |
| 外文關鍵詞: | Density Functional Theory, Dye-Sensitized Solar Cells, Sensitizer, Betanidin |
| 相關次數: | 點閱:60 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是利用密度泛函理論(DFT)的方法對天然色素分子Betanidin及其基本骨架進行計算,並在其分子結構中不同的位置進行氟的取代,進行同樣的計算。由氟乙烯的軌域作用中得知氟的孤對電子會對π系統的軌域產生作用,亦即與HOMO的Orbital Mixing和與LUMO的負超共軛效應,而使軌域能階提高。我們要利用這個結果解釋氟取代對軌域能階的效應,因此本文主旨在於探討分子結構中,不同位置的碳進行氟取代以後的分子軌域組成,與軌域能階的高低有何關係。結果顯示,在π系統進行氟取代的分子中,若氟的孤對電子的軌域參與成分越高,則相對的軌域能階也越高。
此外,藉由與時間相關的DFT(TDDFT)對Betanidin及其一系列氟取代分子進行計算,得到模擬的電子吸收光譜以及各吸收能帶的強度和電子躍遷的軌域組態。關於各氟取代分子的最大吸收波長所產生紅移或藍移現象,可利用分子軌域的組成來解釋。
最後從分子軌域能階、組成以及電子吸收光譜等角度來探討何種Betanidin的氟取代分子作為染料敏化太陽能電池中的光敏化劑最為合適。
The thesis is a theoretical study of natural pigment Betanidin and its basic skeleton mainly by means of density functional theory (DFT). Moreover, replacement by fluorine at different sites in the molecular structure is carried out and calculated in the same way.
According to the message from the orbital interactions of Fluoroethene, the lone pair of fluorine would interact with the orbitals of the π-system, namely, orbital mixing with HOMO and negative hyperconjugation with LUMO. These effects would enhance the orbital energies. We would like to use the result to explain the substituent effects of fluorine to the molecule orbital energies.
Therefore, the theme of the thesis is to investigate the correlation between orbital energies and the composition of molecular orbitals after the molecular structure is fluorine-substituted at different sites. The results show that among the molecules fluorine-substituted in the π-system, the more the lone pair of fluorine participates in the molecular orbitals, the higher the orbital energy is.
Besides, Betanidin and a series of fluorine-substituted Betanidin molecules are calculated with time-dependent DFT (TDDFT). The simulated electronic absorption spectra and energy bands with its strengths and electronic transition configurations are acquired from TDDFT results. The red shift or the blue shift of the maximum absorption wavelength for fluorine-substituted molecules is also explained by the composition of molecular orbitals.
Finally, it is judged that which fluorine-substituted Betanidin molecules are appropriate to be the sensitizers of dye-sensitized solar cells in the sight of the molecular orbital energies, composition, and electronic absorption spectra.
1.http://freesolar.gc-solar.com/global-market-analysis-/market-researches-/2218-ten-next-five-years-the-problem-of-human-there-is-reason-for-solar-energy-industry.html
2.方洪,〈能源危機的反思〉,新紀元周刊,27期,2007年7月刊。
3.http://www.ren21.net/REN21Activities/Publications/GlobalStatusReport/GSR2010/tabid/5824/Default.aspx
4.O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.
5.翁敏航,《太陽能電池—原理、元件、材料、製程與檢測技術》,東華書局:臺北市,2010年。
6.Hao, S.; Wu, J.; Huang, Y.; Lin, J. Solar Energy 2006, 80, 209.
7.Zhang, D.; Lanier, S. M.; Downing, J. A.; Avent, J. L.; Lum, J.; McHale, J. L. J. Photochem. Photobiol. A: Chem. 2008, 195, 72.
8.Calogero, G.; Marco, G. D.; Caramori, S.; Cazzanti, S.; Argazzi, R.; Bignozzi, C. A. Energy Environ. Sci. 2009, 2, 1162.
9.Zaban, A.; Ferrere, S.; Gregg, B. A. J. Phys. Chem. B 1998, 102, 452.
10.http://www.ipama-age.org/news/A20080904.html
11.顧鴻濤,《太陽能電池元件導論—材料、元件、製程、系統》,全威圖書有限公司:臺北縣,2008年。
12.Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M. Solar Energy 2011, 85, 1172.
13.Grätzel, M. Nature 2001, 414, 338.
14.Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
15.Meyer, G. J. ACS Nano 2010, 4, 4337.
16.Hagfeldt, A.; Lindquist, S.-E.; Grätzel, M. Sol. Energy Mater. Sol. Cells 1994, 32, 245.
17.蔡進譯,〈超高效率太陽電池—從愛因斯坦的光電效應談起〉,物理雙月刊,27卷5期,2005年10月刊。
18.胡維平,〈量子化學計算〉,國立中正大學化學暨生物化學系,2009年。
19.Levine, I. N. Quantum Chemistry; 5th ed., Prentice-Hall, Inc.: Upper Saddle River, New Jersey, 2000.
20.謝從卿,《量子化學》,安和出版社:臺北縣,1987年。
21.Schrödinger, E. Ann. Physik 1926, 79, 361.
22.Born, M.; Oppenheimer, J. R. Ann. Physik 1927, 84, 457.
23.Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.
24.Hohenberg, P.; Kohn, W. Physical Review 1964, 136, B864.
25.Kohn, W.; Sham, L. J. Physical Review 1965, 140, A1133.
26.Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids, McGraw-Hill: New York, 1974.
27.Salahub, D. R.; Zerner, M. C. Eds. The Challenge of d and f Electrons, ACS: Washington, D. C., 1989.
28.Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules, Oxford Univ. Press: Oxford, 1989.
29.Becke, A. D. Phys. Rev. 1988, A38, 3098.
30.Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
31.Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.