| 研究生: |
蔡昀珊 Tsai, Yun-Shan |
|---|---|
| 論文名稱: |
藉由磺酸化金屬有機骨架實現表面質子富集功能以促進硝酸鹽還原產氨之電化學反應 Sulfonate-Functionalized Metal–Organic Framework as a Surface Proton Enrichment Layer to Facilitate Electrochemical Nitrate Reduction to Ammonia |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 質子富集效應 、陰離子金屬有機骨架材料 、電催化產氨 |
| 外文關鍵詞: | Electrochemical nitrate reduction to ammonia, ionic MOF, coating materials |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硝酸鹽電化學還原反應(Electrochemical nitrate reduction reaction, NO3RR)在常溫下是一種具吸引力的氨生成路徑,但此反應涉及九個質子的轉移,並且需要與亞硝酸鹽生成及析氫反應(Hydrogen evolution reaction, HER)這兩種需要兩個質子的副反應進行競爭。因此,我們設計並合成了一種富含磺酸基團的鋯基金屬有機骨架(Metal-organic frameworks, MOFs),即 SO3-MOF-808,作為塗層修飾於具有催化活性的銅基電極表面。該MOF的負電性磺酸基團能夠有效地富集質子於電極表面,顯著提升NO3RR反應中氨生成的選擇性。相比之下,當MOF塗層引入帶正電的三甲基銨基團時,由於排斥質子的效應,會顯著促進硝酸鹽轉化為亞硝酸鹽,且在所有測試電位下,其選擇性均超過90%。
在最佳反應條件下,修飾SO3-MOF-808 的銅電極實現了 87.5%的氨生成法拉第效率、95.6%的硝酸鹽轉化選擇性以及0.383 mmol/h-mg的氨生成速率,均顯著優於未修飾的銅電極以及修飾Nafion塗層的銅電極。本研究結果表明,磺酸基功能化MOF作為富集質子於電極表面的高效材料,具潛力成為NO3RR中商業化Nafion的先進替代品,並且該類電化學惰性MOF塗層在一系列質子耦合電催化反應中展現了廣泛的用用前景。
The electrochemical nitrate reduction reaction (NO3RR) presents a promising method for ammonia synthesis under ambient conditions. However, this nine-proton transformation process competes with side reactions such as the two-proton reduction to nitrite and the hydrogen evolution reaction (HER), making selective ammonia production particularly challenging.
In recent years, considerable efforts have been directed toward developing efficient electrocatalysts to address this issue. In this study, rather than modifying the catalyst itself, a different approach was employed by incorporating a zirconium-based metal-organic framework (MOF), SO3-MOF-808, as a surface coating on copper-based electrodes. This MOF is electrochemically inactive, porous, and chemically stable, and is characterized by abundant sulfonate groups within its framework. While the coating does not significantly influence the electrochemical surface area or the total reaction rate, its negatively charged functional groups enhance the local proton concentration near the catalyst surface, effectively improving the selectivity for ammonia formation during NO3RR. Conversely, applying a MOF coating containing positively charged trimethylammonium groups, which repel protons, leads to a high selectivity for nitrite production, exceeding 90% across all tested potentials.
Under optimal conditions, the copper electrode with SO3-MOF-808 coating achieved a Faradaic efficiency of 87.5%, a nitrate-to-ammonia selectivity of 95.6%, and an ammonia yield rate of 0.097 mmol/cm2·h. These values surpass those obtained with both the unmodified copper electrode (75.0%, 93.9%, 0.087 mmol/cm2·h) and the Nafion-coated counterpart (83.3%, 86.9%, 0.064 mmol/cm2·h). The findings highlight the potential of using electrochemically inert MOF coatings as effective alternatives to traditional proton-conductive materials such as Nafion, opening new avenues for enhancing proton-coupled electrochemical reactions.
[1] Kumar, A., Vibhu, V., Bassat, J. M., Nohl, L., de Haart, L., Bouvet, M., Eichel, R. A. Ammonia as a potential energy vector in the Burgeoning Hydrogen economy. ChemElectroChem. 11 (15), e202300845, 2024.
[2] Giddey, S., Badwal, S. P., Munnings, C., Dolan, M. Ammonia as a renewable energy transportation media. ACS Sustainable Chemistry & Engineering. 5(11), 10231-10239, 2017.
[3] Spatolisano, E., Pellegrini, L. A., de Angelis, A. R., Cattaneo, S., Roccaro, E. Ammonia as a carbon-free energy carrier: NH3 cracking to H2. Industrial & Engineering Chemistry Research. 62 (28), 10813-10827, 2023.
[4] Hasan, M. H., Mahlia, T. M. I., Mofijur, M., Rizwanul Fattah, I., Handayani, F., Ong, H. C., Silitonga, A. A comprehensive review on the recent development of ammonia as a renewable energy carrier. Energies. 14 (13), 3732, 2021.
[5] Smith, C., Hill, A. K., Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science. 13 (2), 331-344, 2020.
[6] Wang, T., Abild-Pedersen, F. Achieving industrial ammonia synthesis rates at near-ambient conditions through modified scaling relations on a confined dual site. Proceedings of the National Academy of Sciences. 118 (30), e2106527118, 2021.
[7] Rafiqul, I., Weber, C., Lehmann, B., Voss, A. Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy. 30 (13), 2487-2504, 2005.
[8] Chen, G.-F., Cao, X., Wu, S., Zeng, X., Ding, L.-X., Zhu, M., Wang, H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. Journal of the American Chemical Society. 139 (29), 9771-9774, 2017.
[9] Suryanto, B. H., Du, H.-L., Wang, D., Chen, J., Simonov, A. N., MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nature Catalysis. 2 (4), 290-296, 2019.
[10] Chen, S., Perathoner, S., Ampelli, C., Mebrahtu, C., Su, D., Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon‐nanotube based electrocatalyst. Angewandte Chemie International Edition. 56 (10), 2699-2703, 2017.
[11] Wang, J., Yu, L., Hu, L., Chen, G., Xin, H., Feng, X. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nature communications. 9 (1), 1795, 2018.
[12] Wang, Y., Zhou, W., Jia, R., Yu, Y., Zhang, B. Unveiling the activity origin of a copper‐based electrocatalyst for selective nitrate reduction to ammonia. Angewandte chemie international edition. 59 (13), 5350-5354, 2020.
[13] Wang, Y., Xu, A., Wang, Z., Huang, L., Li, J., Li, F., Wicks, J., Luo, M., Nam, D.-H., Tan, C.-S. Enhanced nitrate-to-ammonia activity on copper nickel alloys via tuning of intermediate adsorption. Journal of the American Chemical Society. 142 (12), 5702-5708, 2020.
[14] Wang, W., Chen, J., Tse, E. C. Synergy between Cu and Co in a layered double hydroxide enables close to 100% nitrate-to-ammonia selectivity. Journal of the American Chemical Society. 145 (49), 26678-26687, 2023.
[15] Wang, Y., Wang, C., Li, M., Yu, Y., Zhang, B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chemical Society Reviews. 50 (12), 6720-6733, 2021.
[16] Zhang, X., Wang, Y., Liu, C., Yu, Y., Lu, S., Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chemical Engineering Journal. 403, 126269, 2021.
[17] Gao, J., Jiang, B., Ni, C., Qi, Y., Zhang, Y., Oturan, N., Oturan, M. A. Nonprecious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: Preparation, performance and mechanism. Applied Catalysis B: Environmental. 254, 391-402, 2019.
[18] Simpson, B. K., Johnson, D. C. Electrocatalysis of Nitrate Reduction at Copper‐Nickel Alloy Electrodes in Acidic Media. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 16 (7), 532-538, 2004.
[19] McEnaney, J. M., Blair, S. J., Nielander, A. C., Schwalbe, J. A., Koshy, D. M., Cargnello, M., Jaramillo, T. F. Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS sustainable chemistry & engineering. 8 (7), 2672-2681, 2020.
[20] Li, J., Zhan, G., Yang, J., Quan, F., Mao, C., Liu, Y., Wang, B., Lei, F., Li, L., Chan, A. W. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. Journal of the american chemical society. 142 (15), 7036-7046, 2020.
[21] Jia, R., Wang, Y., Wang, C., Ling, Y., Yu, Y., Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. Acs Catalysis. 10 (6), 3533-3540, 2020.
[22] Martínez, J., Ortiz, A., Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Applied Catalysis B: Environmental. 207, 42-59, 2017.
[23] Fu, X., Zhao, X., Hu, X., He, K., Yu, Y., Li, T., Tu, Q., Qian, X., Yue, Q., Wasielewski, M. R. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Applied Materials Today. 19, 100620, 2020.
[24] Xu, Y., Duan, J., Du, J., Yang, X., Duan, Y., Tang, Q. Flexible, all inorganic CsPbBr3 perovskite solar cells tailored by heat‐resistant muscovite substrates. ChemSusChem. 14 (6), 1512-1516, 2021.
[25] Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K., Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Applied Catalysis B: Environmental. 236, 546-568, 2018.
[26] Xu, Y.-T., Xie, M.-Y., Zhong, H., Cao, Y. In situ clustering of single-atom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction. ACS Catalysis. 12 (14), 8698-8706, 2022.
[27] Wang, Z., Liu, S., Wang, M., Zhang, L., Jiang, Y., Qian, T., Xiong, J., Yang, C., Yan, C. In situ construction of metal–organic frameworks as smart channels for the effective electrocatalytic reduction of nitrate at ultralow concentrations to ammonia. ACS Catalysis. 13 (13), 9125-9135, 2023.
[28] Mondol, P., Panthi, D., Ayala, A. J. A., Odoh, S. O., Barile, C. J. Membrane-modified electrocatalysts for nitrate reduction to ammonia with high faradaic efficiency. Journal of Materials Chemistry A. 10 (42), 22428-22436, 2022.
[29] Mondol, P., Thind, J. K., Barile, C. J. Selective electrocatalytic nitrate reduction to ammonia using nafion-covered Cu electrodeposits. The Journal of Physical Chemistry C. 127 (17), 8054-8061, 2023.
[30] Qin, D., Song, S., Liu, Y., Wang, K., Yang, B., Zhang, S. Enhanced Electrochemical Nitrate‐to‐Ammonia Performance of Cobalt Oxide by Protic Ionic Liquid Modification. Angewandte Chemie International Edition. 62 (28), e202304935, 2023.
[31] Yu, J., Qin, Y., Wang, X., Zheng, H., Gao, K., Yang, H., Xie, L., Hu, Q., He, C. Boosting electrochemical nitrate-ammonia conversion via organic ligands-tuned proton transfer. Nano Energy. 103, 107705, 2022.
[32] Furukawa, H., Cordova, K. E., O’Keeffe, M., Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science. 341 (6149), 1230444, 2013.
[33] Kitagawa, S. Metal–organic frameworks (MOFs). Chemical Society Reviews. 43 (16), 5415-5418, 2014.
[34] Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., Snurr, R. Q., Nguyen, S. T., Yazaydın, A. O. z. r., Hupp, J. T. Metal–organic framework materials with ultrahigh surface areas: is the 90 sky the limit? Journal of the American Chemical Society. 134 (36), 15016 15021, 2012.
[35] Cohen, S. M. Postsynthetic methods for the functionalization of metal organic frameworks. Chemical reviews. 112 (2), 970-1000, 2012.
[36] Shearer, G. C., Vitillo, J. G., Bordiga, S., Svelle, S., Olsbye, U., Lillerud, K. P. Functionalizing the defects: postsynthetic ligand exchange in the metal organic framework UiO-66. Chemistry of Materials. 28 (20), 7190 7193, 2016.
[37] Jeoung, S., Kim, S., Kim, M., Moon, H. R. Pore engineering of metal organic frameworks with coordinating functionalities. Coordination Chemistry Reviews. 420, 213377, 2020.
[38] Ryu, U., Jee, S., Rao, P. C., Shin, J., Ko, C., Yoon, M., Park, K. S., Choi, K. M. Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coordination Chemistry Reviews. 426, 213544, 2021.
[39] Rojas-Buzo, S., Salusso, D., Bonino, F., Paganini, M., Bordiga, S. Unraveling the reversible formation of defective Ce3+ sites in the UiO-66 (Ce) material: a multi-technique study. Materials Today Chemistry. 27, 101337, 2023.
[40] Yoon, M., Srirambalaji, R., Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chemical reviews. 112 (2), 1196-1231, 2012.
[41] Majewski, M. B., Peters, A. W., Wasielewski, M. R., Hupp, J. T., Farha, O. K. Metal–organic frameworks as platform materials for solar fuels catalysis. ACS Energy Letters. 3 (3), 598-611, 2018.
[42] Noh, H., Kung, C.-W., Otake, K.-i., Peters, A. W., Li, Z., Liao, Y., Gong, X., Farha, O. K., Hupp, J. T. Redox-mediator-assisted electrocatalytic hydrogen evolution from water by a molybdenum sulfide-functionalized metal–organic framework. ACS Catalysis. 8 (10), 9848-9858, 2018.
[43] Young, A. J., Guillet-Nicolas, R., Marshall, E. S., Kleitz, F., Goodhand, A. J., Glanville, L. B., Reithofer, M. R., Chin, J. M. Direct ink writing of catalytically active UiO-66 polymer composites. Chemical communications. 55 (15), 2190-2193, 2019.
[44] Valekar, A. H., Lee, M., Yoon, J. W., Kwak, J., Hong, D.-Y., Oh, K.-R., Cha, G.-Y., Kwon, Y.-U., Jung, J., Chang, J.-S. Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: exploring the role of metal node coordination and modification. ACS Catalysis. 10 (6), 3720-3732, 2020.
[45] Peralta, R. A., Huxley, M. T., Lyu, P., Díaz-Ramírez, M. L., Park, S. H., Obeso, J. L., Leyva, C., Heo, C. Y., Jang, S., Kwak, J. H. Engineering catalysis within a saturated In (III)-based MOF possessing dynamic ligand–metal bonding. ACS Applied Materials & Interfaces. 15 (1), 1410 1417, 2022.
[46] Burtch, N. C., Jasuja, H., Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chemical reviews. 114 (20), 10575-10612, 2014.
[47] Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., Farha, O. K. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials. 1 (3), 1-15, 2016.
[48] Yuan, S., Qin, J.-S., Lollar, C. T., Zhou, H.-C. Stable metal–organic frameworks with group 4 metals: current status and trends. ACS central science. 4 (4), 440-450, 2018.
[49] Hod, I., Deria, P., Bury, W., Mondloch, J. E., Kung, C.-W., So, M., Sampson, M. D., Peters, A. W., Kubiak, C. P., Farha, O. K. A porous proton relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nature communications. 6 (1), 8304, 2015.
[50] Usov, P. M., Ahrenholtz, S. R., Maza, W. A., Stratakes, B., Epley, C. C., Kessinger, M. C., Zhu, J., Morris, A. J. Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film. Journal of Materials Chemistry A. 4 (43), 16818-16823, 2016.
[51] Roy, S., Huang, Z., Bhunia, A., Castner, A., Gupta, A. K., Zou, X., Ott, S. Electrocatalytic hydrogen evolution from a cobaloxime-based metal organic framework thin film. Journal of the American Chemical Society. 141 (40), 15942-15950, 2019.
[52] Liberman, I., Shimoni, R., Ifraemov, R., Rozenberg, I., Singh, C., Hod, I. Active-site modulation in an Fe-porphyrin-based metal–organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics. Journal of the American Chemical Society. 142 (4), 1933-1940, 2020.
[53] Chang, T. E., Chuang, C. H., Chen, Y. H., Wang, Y. C., Gu, Y. J., Kung, C. W. Iridium‐Functionalized Metal‐Organic Framework Nanocrystals Interconnected by Carbon Nanotubes Competent for Electrocatalytic Water Oxidation. ChemCatChem. 14 (15), e202200199, 2022.
[54] Jiang, M., Su, J., Song, X., Zhang, P., Zhu, M., Qin, L., Tie, Z., Zuo, J.-L., Jin, Z. Interfacial reduction nucleation of noble metal nanodots on redox active metal–organic frameworks for high-efficiency electrocatalytic conversion of nitrate to ammonia. Nano Letters. 22 (6), 2529-2537, 2022.
[55] Shan, L., Ma, Y., Xu, S., Zhou, M., He, M., Sheveleva, A. M., Cai, R., Lee, D., Cheng, Y., Tang, B. Efficient electrochemical reduction of nitrate to ammonia over metal-organic framework single-atom catalysts. Communications Materials. 5 (1), 104, 2024.
[56] Kung, C.-W., Goswami, S., Hod, I., Wang, T. C., Duan, J., Farha, O. K., Hupp, J. T. Charge transport in zirconium-based metal–organic frameworks. Accounts of chemical research. 53 (6), 1187-1195, 2020.
[57] Shen, C.-H., Chen, Y.-H., Wang, Y.-C., Chang, T.-E., Chen, Y.-L., Kung, C.-W. Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Physical Chemistry Chemical Physics. 24 (17), 9855-9865, 2022.
[58] Lin, S., Usov, P. M., Morris, A. J. The role of redox hopping in metalorganic framework electrocatalysis. Chemical Communications. 54 (51), 6965-6974, 2018.
[59] Castner, A. T., Su, H., Svensson Grape, E., Inge, A. K., Johnson, B. A., Ahlquist, M. r. S., Ott, S. Microscopic Insights into Cation-Coupled Electron Hopping Transport in a Metal–Organic Framework. Journal of the American Chemical Society. 144 (13), 5910-5920, 2022.
[60] Li, X., Surendran Rajasree, S., Gude, V., Maindan, K., Deria, P. Decoupling redox hopping and catalysis in metal‐organic frameworks based electrocatalytic CO2 reduction. Angewandte Chemie International Edition. 62 (22), e202219046, 2023.
[61] Lin, S., Ravari, A. K., Zhu, J., Usov, P. M., Cai, M., Ahrenholtz, S. R., Pushkar, Y., Morris, A. J. Insight into Metal–Organic Framework Reactivity: Chemical Water Oxidation Catalyzed by a [Ru (tpy)(dcbpy)(OH2)]2+‐Modified UiO‐67. ChemSusChem. 11 (2), 464-471, 2018.
[62] Johnson, B. A., Bhunia, A., Ott, S. Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film. Dalton Transactions. 46 (5), 1382-1388, 2017.
[63] Shen, C. H., Kung, C. W. Stable and Electrochemically “Inactive” Metal−Organic Frameworks for Electrocatalysis. ChemElectroChem. 10 (23), e202300375, 2023.
[64] Mukhopadhyay, S., Shimoni, R., Liberman, I., Ifraemov, R., Rozenberg, I., Hod, I. Assembly of a metal–organic framework (MOF) membrane on a solid electrocatalyst: introducing molecular‐level control over heterogeneous CO2 reduction. Angewandte Chemie International Edition. 60 (24), 13423-13429, 2021.
[65] Shanker, G. S., Ghatak, A., Binyamin, S., Balilty, R., Shimoni, R., Liberman, I., Hod, I. Regulation of catalyst immediate environment enables acidic electrochemical benzyl alcohol oxidation to benzaldehyde. ACS catalysis. 14 (8), 5654-5661, 2024.
[66] Mukhopadhyay, S., Naeem, M. S., Shiva Shanker, G., Ghatak, A., Kottaichamy, A. R., Shimoni, R., Avram, L., Liberman, I., Balilty, R., Ifraemov, R. Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction. Nature Communications. 15 (1), 3397, 2024.
[67] Shen, C.-H., Chang, Y.-N., Chen, Y.-L., Kung, C.-W. Sulfonate-grafted metal– organic framework ─ a porous alternative to Nafion for electrochemical sensors. ACS Materials Letters. 5 (7), 1938-1943, 2023.
[68] Nagy, G., Gerhardt, G., Oke, A., Rice, M., Adams, R., Szentirmay, M., Martin, C. Ion exchange and transport of neurotransmitters in nation films on conventional and microelectrode surfaces. Journal of electroanalytical chemistry and interfacial electrochemistry. 188 (1-2), 85-94, 1985.
[69] Li, J.-H., Chen, Y.-C., Wang, Y.-S., Ho, W. H., Gu, Y.-J., Chuang, C.-H., Song, Y.-D., Kung, C.-W. Electrochemical evolution of pore-confined metallic molybdenum in a metal–organic framework (MOF) for all-MOF based pseudocapacitors. ACS Applied Energy Materials. 3 (7), 6258-6267, 2020.
[70] Li, J., Gao, J., Feng, T., Zhang, H., Liu, D., Zhang, C., Huang, S., Wang, C., Du, F., Li, C. Effect of supporting matrixes on performance of copper catalysts in electrochemical nitrate reduction to ammonia. Journal of Power Sources. 511, 230463, 2021.
[71] Yang, S.-C., Muthiah, B., Chang, J.-W., Tsai, M.-D., Wang, Y.-C., Li, Y.-P., Kung, C.-W. Support effect in metal–organic framework-derived copper-based electrocatalysts facilitating the reduction of nitrate to ammonia. Electrochimica Acta. 492, 144348, 2024.
[72] Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., Yaghi, O. M. Water adsorption in porous metal–organic frameworks and related materials. Journal of the American Chemical Society. 136 (11), 4369-4381, 2014.
[73] Villoria‐del‐Álamo, B., Rojas‐Buzo, S., García‐García, P., Corma, A. Zr MOF‐808 as Catalyst for Amide Esterification. Chemistry–A European Journal. 27 (14), 4588-4598, 2021.
[74] Gu, Y.-J., Lo, Y.-A., Li, A.-C., Chen, Y.-C., Li, J.-H., Wang, Y.-S., Tian, H.-K., Kaveevivitchai, W., Kung, C.-W. A Single Potassium-Ion Conducting Metal–Organic Framework. ACS Applied Energy Materials. 5 (7), 8573-8580, 2022.
[75] Szafran, M., Koput, J. Calculation of the vibrational spectra of betaine hydrochloride. Journal of molecular structure. 404 (1-2), 91-104, 1997.
[76] Hadjiivanov, K. I., Panayotov, D. A., Mihaylov, M. Y., Ivanova, E. Z., Chakarova, K. K., Andonova, S. M., Drenchev, N. L. Power of infrared and Raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chemical Reviews. 121(3), 1286-1424, 2020.
[77] Wu, Z.-Y., Karamad, M., Yong, X., Huang, Q., Cullen, D. A., Zhu, P., Xia, C., Xiao, Q., Shakouri, M., Chen, F.-Y. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature communications. 12 (1), 2870, 2021.
[78] Zhang, R., Li, C., Cui, H., Wang, Y., Zhang, S., Li, P., Hou, Y., Guo, Y., Liang, G., Huang, Z. Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells. Nature Communications. 14 (1), 8036, 2023.
[79] Zhang, J., Chen, C., Zhang, R., Wang, X., Wei, Y., Sun, M., Liu, Z., Ge, R., Ma, M., Tian, J. Size-induced d band center upshift of copper for efficient nitrate reduction to ammonia. Journal of Colloid and Interface Science. 658, 934-942, 2024.
[80] Trasatti, S., Petrii, O. Real surface area measurements in electrochemistry. Pure and applied chemistry. 63 (5), 711-734, 1991.
[81] Li, D., Wang, F., Mao, J. Surface-reconstructed copper foil free-standing electrode with nanoflower Cu/Ce2O3 by in situ electrodeposition reduction for electrocatalytic nitrate reduction to ammonia. Inorganic Chemistry. 62(40), 16283-16287, 2023.
[82] Yang, J., Qi, H., Li, A., Liu, X., Yang, X., Zhang, S., Zhao, Q., Jiang, Q., Su, Y., Zhang, L. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. Journal of the American Chemical Society. 144 (27), 12062 12071, 2022.
[83] Li, P., Li, R., Liu, Y., Xie, M., Jin, Z., Yu, G. Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. Journal of the American Chemical Society. 145 (11), 6471-6479, 2023.
[84] Jiang, M., Zhu, Q., Song, X., Gu, Y., Zhang, P., Li, C., Cui, J., Ma, J., Tie, Z., Jin, Z. Batch-scale synthesis of nanoparticle-agminated three dimensional porous Cu@Cu2O microspheres for highly selective electrocatalysis of nitrate to ammonia. Environmental Science & Technology. 56 (14), 10299-10307, 2022.
[85] Zhu, X., Huang, H., Zhang, H., Zhang, Y., Shi, P., Qu, K., Cheng, S.-B., Wang, A.-L., Lu, Q. Filling mesopores of conductive metal–organic frameworks with Cu clusters for selective nitrate reduction to ammonia. ACS Applied Materials & Interfaces. 14 (28), 32176-32182, 2022.
[86] Sun, W. J., Ji, H. Q., Li, L. X., Zhang, H. Y., Wang, Z. K., He, J. H., Lu, J. M. Built‐in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra‐low concentration and electroreduction to ammonia. Angewandte Chemie International Edition. 60 (42), 22933 22939, 2021.
[87] Song, Z., Liu, Y., Zhong, Y., Guo, Q., Zeng, J., Geng, Z. Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect. Advanced Materials. 34 (36), 2204306, 2022.
[88] Gong, Z., Zhong, W., He, Z., Liu, Q., Chen, H., Zhou, D., Zhang, N., Kang, X., Chen, Y. Regulating surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia. Applied Catalysis B: Environmental. 305, 121021, 2022.
[89] Li, C., Liu, S., Xu, Y., Ren, T., Guo, Y., Wang, Z., Li, X., Wang, L., Wang, H. Controllable reconstruction of copper nanowires into nanotubes for efficient electrocatalytic nitrate conversion into ammonia. Nanoscale. 14(34), 12332-12338, 2022.
[90] Xu, Y., Wang, M., Ren, K., Ren, T., Liu, M., Wang, Z., Li, X., Wang, L., Wang, H. Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to ammonia transformation. Journal of Materials Chemistry A. 9 (30), 16411-16417, 2021.
[91] Ren, T., Ren, K., Wang, M., Liu, M., Wang, Z., Wang, H., Li, X., Wang, L., Xu, Y. Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion. Chemical Engineering Journal. 426, 130759, 2021.