簡易檢索 / 詳目顯示

研究生: 吳文彬
Suprayugi, Erfan
論文名稱: 盛鋼桶燃燒合成熱間修補材料
Hot Repairing Material For Ladle Based on Self Propogating High Temperature Synthesis Reaction
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 158
外文關鍵詞: hot repairing material, SHS, molten steel and molten slag corrosion, mechanical properties and degree of conversion, ladle
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應用鋁尖晶石磚作為盛鋼桶精煉爐的防火內襯。在接觸熔融態的鋼與爐渣其遭受裂化時會引起腐蝕,導致性能受限。耐火修補材料必須減少鋁尖晶石的腐蝕效應並且增加熔融態的鋼與爐渣接觸的耐久性。近幾年使用射擊技術發展熱修補材料。本論文研究利用自我蔓延高溫合成技術(SHS)開發熱修補材料。自我蔓延高溫合成修補材料基於金屬材料的燒結過程與盛鋼桶有強的鍵結力並且適當的被使用在修補情況。SHS合成熱修補材料主要有四種組成:燃料(鋁、鎂)、氧化劑(金屬氧化物)、惰性物質及添加劑。為了評估機械性能及轉化程度各種SHS合成修補材料系統包含氧化物及非氧化物系統,進一步非氧化物系統,當Al含量為44 wt%、Mg含量為6 wt%以及50 wt%的惰性物,其中添加6 wt%二氧化鈦、3 wt%氧化鋯、4 wt%鋁化蓋水泥、1.5 wt%矽酸鈉時,其機械強度為 0.58 MPa、 rebound loss為11.52 wt%、孔隙率為24.04、molten steel的腐蝕速率為0.06 mm/hr而molten slag 的腐蝕速率為0.92 mm/hr。

    Rich alumina spinel bricks are used as refractory lining inside ladle. In contact with molten steel and molten slag, they suffer of degradation to molten steel and molten slag due to corrosion by penetration and reaction of molten steel and molten slag and limit their performance. Refractory repairing material is needed in order to reduce the corrosion effect of alumina spinel bricks and increasing their durability contact with molten steel and molten slag. Hot repairing material with gunning technique was developed in recent years. The purpose of this thesis is developing hot repairing materials based on the self propogating high temperature synthesis (SHS) reaction. Self propogating high temperature synthesis reparing material based on the sintering process of metallic material is believed have a high bonding strength with ladle brick refractory and suitable used in repairing condition of ladle furnace.
    SHS hot repairing materials were formulated four major constituents: aluminum and magnesium as a fuel, oxidizer (intentionally added metal oxides or naturally available O2 in air), inert as framework (china steel refractory material with various particle size distribution) and additives (for modifying combustion or product properties). To evaluate the mechanical properties and degree of conversion, various SHS repairing material system which consists of oxidizer system and non-oxide system has been developed. In advanced, non oxide system with 44 wt% of Al, 6 wt% of Mg and inert 50% added with 3 wt% of Titanium oxide, 3 wt % of zirconia oxide, 4 wt% of calcium aluminate cement and 1.5 wt% of sodium silicate has a result : MOR (0.58 MPa), Rebound loss (11.52 wt%), apparent porosity (24.04), metal corrosion rate (0.06 mm/hr) and molten slag corrosion rate (0.92 mm/hr).

    TABLE OF CONTENTS 摘要 i ABSTRACT ii ACKNOWLEDGMENT iii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES xi CHAPTER I INTRODUCTION 1 CHAPTER II LITERATURE REVIEW 3 II.1 Ladle Application of Refractories. 3 II.2 Various Repairing Technique. 6 II.3 Self-Propagating High-Temperature Synthesis (SHS) 12 II.4 Magnesium Aluminate Spinel 16 II.4.1 Structure 16 II.4.2 Physical Properties 17 II.4.3 Alumina-Rich Spinel 18 II.5 Thermodynamic consideration 18 II.6 Reaction between molten aluminum and refractories 20 II.7 Reaction and sintering 21 II.8 Reactant list. 22 II.8.1 Fuel Based on Thermite Reaction. 22 II.8.2 TiO2-B2O3-Al System. 24 II.8.3 Non-Thermite system 26 II.9 Corrosion 38 II.10 Amount of water in gunning installation. 44 CHAPTER III EXPERIMENTAL SECTION 46 III.1 Properties and Characteristic of reactant. 46 III.2. Experimental System. 47 III.2.1 Combustion based on Thermite Reaction System 47 III.2.2 Combustion based on sintering process. 48 III.3 Experimental Procedure. 48 III.3.1 Surface Treatment. 48 III.3.2 Preliminary study of SHS reactant. 49 III.3.3 Ignition temperature and combustion temperature measurement. 51 III.3.4 Measurement method for apparent porosity, water absorption, and densities 51 III.3.5 Modulus of rupture (bonding strength) 52 III.3.6 Rebound Loss. 54 III.3.7 Molten Steel and Molten Slag Resistance. 55 III.4 Crystaline Phase and Phase Composition. 56 III.5 Microstructure 58 CHAPTER IV RESEARCH POLICY, METHODS AND STEPS. 59 IV.1 Basic informations for ladle. 59 IV.2 Requirements to the SHS hot repairing materials 59 IV.2.1 General requirement 59 IV.2.2 General requirement Specific requirements 60 CHAPTER V RESULT AND DISCUSSION 61 V.1 Basic Information of ladle. 61 V.1.1 China steel product analysis. 62 V.2 Preliminary Study of reactant 65 V.2.1 Aluminum Surface Treatment 65 V.2.2 Calcined aluminum. 69 V.2.3 Aluminum hydroxide preheating treatment. 69 V.3. Study of the SHS hot repairing material reactant for ladle. 71 V.3.1 Aluminum surface treatment effect. 72 V.3.2 Effect of aluminum hydroxide preheating treatment 74 V.3.3 Additives effect for increasing the formation of oxide and spinel 77 V.3.4 Effect of CaO additives in different preheating aluminum treatment 81 V.3.5 Effect of different heating time of SHS repairing material at 8000C 83 V.3.6 Effect of the different heating temperature. 85 V.3.7 Effect of the different composition of Inert. 88 V.3.8 Effect of aluminum surface treatment preheating time using calcium aluminate cement 90 V.3.9 Effect of additives in different percentage composition 92 V.4. Developing SHS repairing material receipt. 94 V.4.1 Thermite System. 94 V.4.2 Non-Thermite system 110 V.5 Proposed Reaction Mechanism of SHS combustion product. 125 V.6 Rebound loss measurement. 129 V.7 Molten Steel and Slag attack Corrosion test. 130 V.8 Microstructure Observation. 138 V.8.1 Interface between combustion product and china steel brick at 8000C 138 V.8.2 Corrosion reaction on SHS repairing material. 144 V.9 Origin of The Bonding strength. 151 CHAPTER VI CONCLUSION 153 References 155

    1. W. E. Lee, and Moore, R. E., 1998, "Evolution of in Situ Refractories in the 20th Century," Journal of American Ceramic Society, Vol. 81, No. 6, pp. 1385-1410
    2. C.R. Lynham: Teapot Ladle and Method of Use. US Patent No. 4330107, May 18, 1982.
    3. W.K. Brown, R.E. Gavran, T.W. Lewis: Lined Ladles, Lining Therefore, and Method of Forming the Same. US Patent No. 5318277, June 7, 1994.
    4. P.L. Ivarsson, IGA. Blom, L.G. Berg: Refractory Lining and Process for Its Manufacture. US Patent No. 4617280, October 14, 1986.
    5。 Y. Nishikawa, H. Takahashi: Method for Hot Repairing the Inside of a Furnace. US Patent No. 4436678. June 23, 1981.
    6. A.G. Merzhanov and I.P. Borovinskaya: A new Class of Combustion Process. Combust. Sci. Technol. 10, 195 (1975).
    7. L., D, Henkel,. Koch, et al. (2009). "MgAl2O4-Spinel Synthesized by High-Energy Ball Milling and Reaction Sintering." Journal of the American Ceramic Society 92(4): 805-811.
    8. F., C. Simonin, Olagnon, et al. (2000). "Thermomechanical Behavior of High-Alumina Refractory Castables with Synthetic Spinel Additions." Journal of the American Ceramic Society 83(10): 2481-2490.
    9. K. Sugita: Refractories for Iron and Steelmaking. Chijin-Shokan Co., Ltd., Tokyo, p.275 (1995).
    10. Nshi et al.: Taikabutsu, 36 [3] 172 (1984) in Y. Shinohara: Refractories Handbook. TheTechnical Association of Refractories, Japan. 1998.
    11. Yaoi et al.: Taikabutsu, 45 [9] 521 (1993) in Y. Shinohara: Refractories Handbook. The Technical Association of Refractories, Japan. 1998.
    12. N. Hiraga, H. Nakanisi, and E. Furuno: Improving Refractories for Ladles with Refining Steel. Taikabutsu, 46 [2], 67 (1994).
    13. Kato et al.: Taikabutsu, 48 [3] 142 (1996) in Y. Shinohara: Refractories Handbook. The Technical Association of Refractories, Japan. 1998 .
    14. E. Brichard, M. Jaupain, E. Plumat, P. Deschepper: Apparatus for Forming Refractory Masses. US Patent No. 3800983, April 2, 1974.
    15. J.F. Crider: Self-Propagating High-Temperature Synthesis: a Soviet Method for Producing Ceramic Materials. Ceram. Eng. Sci. Proc. 3, 519 (1982).
    16. A.G. Merzhanov and I.P. Borovinskaya: The Chemistry of Self-Propagating High-Temperature Synthesis. Combust. J. Mater. Chem. 14, 1779- 1786 (2004).
    17. A.G. Merzhanov: Self-Propagating High-Temperature Synthesis (SHS). Institute of Structural Macrokinetics and Materials Science.
    18. S.L. Chung, W.L. Yu and C.N. Lin: A Self-Propagating High Temperature Synthesis Method for Synthesis of AlN Powder. J. Mater. Res. 14, 1928 (1999).
    19. P. Bartha: Spinell und Spinellhaltige Feuerfeste Werkstoffe in Berichtsband Feuerfesttechnik – Werkstoffe, Rohstoffe, Neue Entwicklungen, Verlag Stahleisen mbH, Düsseldorf. 113-133 (1984).
    20. I. Ganesh, Bhattacharjee, S., Saha, B.P., Johnson, R., Rajeshwary, K., Sengupta, R. et al., An efficient MgAl2O4 spinel additives for improved slag erosion and penetration resistance of high-Al2O3 and MgO-C refractories, Ceram. Inter., 2002, 28, 245-253.
    21. G. Baudin, Martinez, R. and Pena., High-temperature mechanical behavior of stoichiometric magnesium spinel. J. Am. Ceram. Soc., 1995, 8(7), 1857-1862.
    22. A. Nishikawa, Technology of monolithic refractories book. Plibrico Japan Company Limited.1984
    23. H.Goldschmidi.Iron Age 82 (1908) 232.
    24. L. L. Wang, Z. A. Munir, et al. (1993). "Thermite reactions: their utilization in the synthesis and processing of materials." Journal of Materials Science 28(14): 3693-3708.
    25. Z. Yu, and Z. Yang (2007). "Self-propagating high-temperature reductive synthesis of TiB2-Al2O3 composite powders." Journal of Wuhan University of Technology--Materials Science Edition 22(1): 48-51
    26. H.-g. Zhu, H.-z. Wang, et al. (2007). "Formation of composites fabricated by exothermic dispersion reaction in Al-TiO2-B2O3 system." Transactions of Nonferrous Metals Society of China 17(3): 590-594
    27. Kosmos. Alenka S., Belic. Lidija I., and Susnik. Dimitrij., Additive in Coarse Grain Alumina Ceramics For Metallization. Fizika A.1996, 5., 85-90.
    28. W.S. Resende, Stoll. R.M., Justus. S.M., Andrade. R.M., Longo. E., Baldo. J.B., Leite. E.R., Paskocimas. C.A., Soledade. L.E.B., Gomes. J.E., Varela. J.A. Key features of alumina/magnesia/graphite refractories for steel ladle lining. Journal of the European Ceramic Society 20 (2000) 1419-1427.
    29. Ritwik Sarkar*, Banerjee. S.K. Das, G., Effect of additives on the densification of reaction sintered and presynthesised spinels. Ceramics International 29 (2003) 55–59.
    30. Zhang. Zhihui*., Nan Li. Effect of polymorphism of Al2O3 on the synthesis of magnesium aluminate spinel. Ceramics International 31 (2005) 583–589
    31. M. A. Trunov a; Schoenitz M. a; Dreizin E. L., Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combustion Theory and Modelling.Vol. 10, No. 4, August 2006, 603–623.
    32. R.S. Alwit, The aluminum-water system. In : Diggle JW. Ashik K V. editors. Oxides and oxide film. Vol 4. New York: Marcel Dekker; 1976.
    33. PR. Underhill, Rider AN. Hydrate oxide film growth on aluminum alloys immersed in warm water. Appl Surf Sci. submitted for publication.
    34. Z.Y. Deng, J.L. Shi, Y.F. Zhang, T.R. Lai, and J.K. Guo: Creep and Creep-Recovery Behavior in Silicon-Carbide-Particle-Reinforced Alumina. J. Am. Ceram. Soc. 82, 944 (1999).
    35. D. Domanski,† Guillermina Urretavizcaya,‡,§ Facundo J. Castro§ and Fabiana C. Gennari‡. “Mechanochemical Synthesis of Magnesium Aluminate Spinel Powder at Room Temperature” J. Am. Ceram. Soc., 87 [11] 2020–2024 (2004).
    36. G.B. SCHAFFER and B.J. HALL. The Influence of the Atmosphere on the Sintering of Aluminum. METALLURGICAL AND MATERIALS TRANSACTIONS A. VOLUME 33A, OCTOBER 2002—3279.
    37. J. Mei, R. D. Halldearn, et al. (1999). "Mechanisms of the aluminium-iron oxide thermite reaction." Scripta Materialia 41(5): 541-548.
    38. M. A. Meyers, E. A. Olevsky, et al. (2001). "Combustion synthesis/densification of an Al2O3-TiB2 composite." Materials Science and Engineering A 311(1-2): 83-99.
    39. F. Simonin, C. Olagnon, et al. (2000). "Thermomechanical Behavior of High-Alumina Refractory Castables with Synthetic Spinel Additions." Journal of the American Ceramic Society 83(10): 2481-2490.
    40. A. MUAN, and S. OMIYA (1960). "Phase Relations in the System Iron Oxide &;Cr2O3in Air." Journal of the American Ceramic Society 43(4): 204-209.
    41. V. S. STUBICAN, R. C. HINK, et al. (1978). "Phase Equilibria and Ordering in the System ZrO2-Y2O3." Journal of the American Ceramic Society 61(1-2): 17-21.
    42. M. Karakus, Moore, Robert E., (2002). "Cathodoluminescence (CL) Microscopy Application to Refractories and Slags
    43. J. Berjonneau, P. Prigent, et al. (2009). "The development of a thermodynamic model for Al2O3-MgO refractory castable corrosion by secondary metallurgy steel ladle slags." Ceramics International 35(2): 623-635.

    下載圖示 校內:2013-08-12公開
    校外:2013-08-12公開
    QR CODE