簡易檢索 / 詳目顯示

研究生: 楊貿崎
Yang, Mao-Chi
論文名稱: 階段式水文地質資料同化分析之研究
Hierarchical assimilation for hydrogeological data
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 81
中文關鍵詞: 資料同化地質統計貝氏定理
外文關鍵詞: assimilation, geostatistics, Bayesian
相關次數: 點閱:155下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水力傳導係數顯著地影響地下水流動及污染傳輸,了解水力傳導係數之空間分布,有助於地下水流動狀態與污染物運移現象之解釋。本研究使用不同尺度之水力傳導係數資料,運用貝氏定理更新未知點之水力傳導係數平均值,再以地質統計方法進行資料之模擬,並利用軟性資料改善模擬之結果。由於貝氏定理具有處理不同尺度與種類資料之功能,經由同化不同尺度資料可以有效地降低水文傳導係數估測之不確定性。研究結果發現使用不同尺度資料,配合階段式資料同化技術可有效地增加估測結果之準度與精度;而全域之軟性資料資訊可大幅降低參數反推結果之不確定性。

    The effect of the hydraulic conductivity on groundwater flow and pollution transport is significant. Understanding the spatial distribution of hydraulic conductivity is helpful for the explanation of groundwater flow movement and contaminant transport phenomena. In this study, hydraulic conductivity data with different scales are integrated using Bayesian geostatistical method. Soft data are used to improve the simulation results. The Bayes' theorem was the capability to deal with data of different scales and types. The assimilation of the different information can effectively reduce uncertainty the estimated hydrological conductivity. The result shows that integrating data of different scales can effectively increase the validity and reliability. The soft data providing whole field information can significantly reduce the uncertainty of the modeling result.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、前言 1 1.1 動機與目的 1 1.2 文獻回顧 2 1.3 研究流程 4 1.4 論文結構 5 第二章 貝氏地質統計理論 6 2.1 地質統計理論 6 2.2簡單克利金 10 2.1.2 模擬 11 2.3.1 非條件模擬 11 2.3.2 條件模擬 14 2.4 貝氏統計方法 17 2.5 貝氏地質統計 19 第三章 階段式貝式地質統計理論 23 3.1 資料型態與尺度 23 3.2 不同尺度水力傳導係數之關係 24 3.3 貝氏階段性演算 25 3.4 準度( validity )與精度( reliability ) 26 第四章 階段式貝氏地質統計於資料同化之應用 29 4.1 相關長度為0之隨機場 34 4.2 相關長度為2之隨機場 42 4.3 空間個點之相關長度為4之案例 50 4.2 空間個點之相關長度為6之案例 58 第五章 結果與討論 66 5.1 不同尺度資料之影響 66 5.2 硬性資料與軟性資料之影響 67 5.3 隨機場空間連續性之影響 68 第六章 結論與建議 69 6.1 結論 69 6.2 心得 70 6.2 建議 70 參考文獻 72 附錄A 79

    1. Ahuja, L. R., O. Wendroth, and D. R. Nielsen (1993), Relationship between initial drainage of surface soil and average profile saturated conductivity, Soil Sci. Soc. Am. J., 57,19-25
    2. Bayes, T. (1763), An essay towards solving a problem in the doctrine of chances, Philosophical Transaction of the Royal. Society 53, 370-418.
    3. Box, G. E. P., and G. C. Tiao (1973), Bayesian Inference in statistical analysis, Andison-Wesley-Longman, Reeding, Mass.
    4. Braja, M. D. (2001), Principles of geotechnical engineering, 5th ed., Bookscole.
    5. Broemeling, L. D. (1985), Bayesian analysis of linear models, Dekker.
    6. Boggs, J. M., S. C. Young, L. W. Gelhar, K. R. Rehfeldt, and E. E. Adams (1992) , Field study of dispersion in a heterogeneous aquifer, 1, overview and site description, Water Resour. Res., 28(12), pp.3281-3292.
    7. Bolstad W. B. (1943), Introduction to Bayesian statistics, John Wiley & Sons, Inc.
    8. Christian, P. R. (2007), The Bayesian Choice, Springer.
    9. Copty, N and Y. Rubin (1993), Geophysical-Hydrological Identification of Field Permeabilities Through Bayesian Updating, Water Resour. Res., 29(8), 2813-2825.
    10. Dagan, G., and V. Nguyen(1989), A comparison of travel time and concentration approaches to modeling transport by groundwater, J. Contam. Hydrol, 4, 71–79.
    11. Davis(1987), Production of conditional simulations via the LU triangular decomposition of the covariance matrix, Math. Geology, 19(2), 91-98.
    12. De Finetti, B. (1991),Theory of probability, Volume 1 and Volume 2, Wiley Classics Library, John Wiley & Sons, New York.
    13. Deutsch, C. V., and A. G. Journel (1992), Geostatistical Software Library and User’s Guide(GSLIB), Oxford, New York.
    14. Deutsch, C. V. (2002), Geostatistical reservoir modeling, 1st edn, Oxford University Press, New York.
    15. Diggle, P. J., R. A. Moyeed, and J. A. Tawn (1998), Model-based Geostatistics ( with Discussion ), Applied Statistics, 47, 299-350.
    16. Durlofsky, L. J. (1991), Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res., 27(5), 699-708.
    17. Efendiev, Y., A. Datta-Gupta, I. Osako, and B. Mallick (2005), Multiscale data integration using coarse-scale models, Adv. Water Resour. Res., 28,303-314.
    18. Feddes, R. A., G. H. de Rooij, J. C. Van Dan, P. Kabat, and P. Droogers (1993a), Estimation of regional effective soil hydraulic parameters by inverse modeling, Water Flow and Solute Transport in Soils, Adv. Ser. Agric. Sci., vol. 20, 211-233.
    19. Feddes, R. A., M. Menenti, P. Kabat, and W. G. Bastiannssen (1993b), Is large-scale inverse modeling of unsaturated flow with areal average evaporation and surface soil moisture as estimated by remote sensing feasible?, J. Hydrol., 143, 125-152.
    20. Gelhar, L. W., Stochastic Subsurface Hydrology, Prentice Hall, New Jersey, 1993.
    21. Gomez-Hernandez, J. (1991), A stochastic approach to the simulation of block conductivity fields conditioned upon data measured at a smaller scale, Ph.D. Thesis, Stanford University.
    22. Goovaerts, P. (1997), Geostatistics for natural resources evalution, Oxford Univ. Press, New York
    23. Hess, K. M. (1989), Use of a borehole flow meter to determine spatial heterogeneity of hydraulic conductivity and macrodispersion in a sand and gravel aquifer, Cape Cod, Massachusetts. In Proceedings of the Conference on New Field Techniques for Quantifying the Physical and Chemical Properties of Heterogeneous Aquifer, eds. F. J. Molz et al. Dublin, Ohio : National Water Well Association, pp. 497-508.
    24. Ines, A. V. M., and B. P. Mohanty (2008), Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithm: 1. Conceptual modeling , Water Resour. Res., 44, W06422, doi:10.1029/2007WR005990.
    25. Ines, A. V. M., and B. P. Mohanty (2009), Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithms: 2. Using airborne remote sensing during SGP97 and SMEX02, Water Resour. Res., 45, W01408, doi:10.1029/2008WR007022.
    26. Killey, R. W. D., and G. L. Moltyaner (1988), Twin Lake Tracer Test: Setting, Methodology, and Hydraulic Conductivity Distribution, Water Resour. Res., 24, 10,1585-1612
    27. Kitanidis, P. K., and E. G. Vomvoris (1983), A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations, Water Resour. Res., 19(3), 677-690
    28. Kitanidis, P. K. (1986), Parameter uncertainty in estimation of spatial functions: Bayesian analysis, Water Resour. Res., 22, 499-507.
    29. Li, X., and T. –C. Tsai (2009), Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod, Water Resour. Res., 45, W09403
    30. Li N., and L. Ren (2010), Application and assessment of a multiscale data integration method to saturated hydraulic conductivity in soil, Water Resour. Res., 46, W09510, doi:10.1029/2009WR008645
    31. Lee, S. H., A. Malallah, A. Datta-Gupta, and D. Hidgon (2000), Multiscale data integration using Markov Random Fields, paper presented at the Annual Technical Conference and Exhibition, Soc. Of Pet. Eng., Dallas, Tex., 1-4 Oct.
    32. Matheron, G. (1963), Principle of Geostatistics, Economic Geology, 58, pp.1246-1266.
    33. McCullagh, P. and J. A. Nelder (1998), Generalized Linear Models, 2th edith. London: Chapman and Hall.
    34. Mosegaard, K. and A. Tarantola (1995), Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100(B7), 12,431-12,447.
    35. Oh, S.-H. and B. Kwon (2001), Geostatistical approach to Bayesian inversion of geophysical data: Markov chain Monte Carlo method, Earth Planet Space, 53,777-791.
    36. Richardson, S. and P. J. Green (1997), On bayesian analysis of mixtures with an unknown number of components, J. R. Statist. Soc. B, 59, 731-792.
    37. Rubin, Y., S. Hubbard, and J. Chen (2001), Estimating the hydraulic conductivity at the South Oyster Site form geophysical tomographic data using Bayesian techniques based on the normal linear regression model, Water Resour. Res., 37(6), 1603-1613.
    38. Sambridge, M. and K. Mosegaard (2002), Monte Carlo methods in geophysical inverse problems, Rev. Geophys., 40(3), 1009, doi:10.1029/2000RG000089
    39. Sudicky, E. A. (1986), A natural gradient experiment on solute transport in a sand aquifer : spatial variability of hydraulic conductivity and its role in the dispersion process., Water Resour. Res., 22(13), pp.2069-2082.
    40. Wei Li, E. Andreas, A. Olaf, and H. Vereecken (2008), Three-Dimensional geostatistical inversion of flowmeter and
    pumping test data, Ground Water, 46, 193-201.
    41. Wilding, L. P. and L. R. Drees (1983), Spatial variability and pedology, p.83-116, In L. P. Wilding et al. (ed.), Pedogenesis and soil taxonomy, I. Concepts and interactions, Elsevier, Amsterdam.
    42. Wu, X., Y. Efendiev, and T. Y. Hou (2002), Analysis of upscaling absolute permeability, Discrete Contin. Dyn. Syst., Ser B, 2(2), 185-204
    43. 王仁鋒、胡光道,線性地質學,中國北京地質出版社,1988。
    44. 黃信彰,2002,以指標地質統計方法建構水文地質模式之研究,
    國立成功大學資源工程系,碩士論文。
    45. 劉原,2009,地質統計方法對水文地質場模擬影響之研究,
    國立成功大學資源工程系,碩士論文。

    下載圖示 校內:2012-09-05公開
    校外:2012-09-05公開
    QR CODE