| 研究生: |
王芳春 Wang, Fang-chuen |
|---|---|
| 論文名稱: |
晶種對於錫鉛合金方向性凝固微結構之影響分析 Experimental Analysis of Seed Effect on the Directional Solidification of Sn-Pb Alloy |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 186 |
| 中文關鍵詞: | 晶種 、方向性凝固 、錫鉛合金 、金相及顯微結構 |
| 外文關鍵詞: | seed, directional solidification, Sn-Pb Alloy, microstructure |
| 相關次數: | 點閱:165 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑄造技術已有數千年的歷史,而隨著時代的進步,對於材料的使用環境限制更加是嚴苛,材料之特性與強度的提升需求增加,而在鑄造之凝固過程中,溫度與濃度場的變化會影響材料的顯微結構,而微結構之控制更是改善其機械性質及物理特性的關鍵所在。一般的鑄造過程是不易控制其凝固結構之形態,最多只能改變其晶粒大小,而方向性凝固之方法可使得鑄件之微結構沿著某一固定方向成長,也是單晶成長之基礎。本文以錫鉛合金為測試材料,採五種實驗模式來探討不同形狀結構之晶種對於方向性凝固微結構影響。在凝固成長過程中提供一相同成份的多晶之晶種誘發鑄件底部的枝狀晶發育時可延晶種優選方向成長,消除底部因高冷卻率形成之細小等軸晶,並獲得較佳之方向性凝固之結構。於實驗中探討不同形狀結構的晶種對其枝狀晶之優選方向控制情形、鑄件晶粒尺寸、晶體成長的束縛控制的影響及對其溫度梯度、成長速率、主枝狀晶臂間距及二次枝狀晶臂間距之間的影響。
The casting skill has been developed for several thousands years. With the progress of time, the environment of material application becomes more severe and hence the promotion requirement of material properties and strength increases. In a casting process, the temperature and concentration fields will affect the microstructures of materials and this influence is the key point of improving their mechanical and physical properties. In a general casting process, it is not easy to control the morphology of solidifying microstructures. The scheme of directional solidification can make the microstructures grow along a fixed direction and it is also the base of single-crystal growth. In this study, five experimental models are utilized to investigate the effects of different-shape seeds on the microstructures of directional solidification and lead-tin alloy is the testing material. In the solidification process, a poly-grain seed with the same initial concentration of the solidifying casting is used to induce the columnar growth at the bottom portion of the casting, which could avoid the equiaxed growth due to the high undercooling or cooling rate there. This is expected to have the better or more complete structure of directional solidification. In the experimental analysis, we studied the influences of different geometry seeds on the constrained growth, the preferential growth direction of dendrite, the grain size, the temperature gradient, the growth rate, the primary arm spacing and the secondary arm spacing.
[1] M. Rettenmayer, H. E. Exner, “Directioanal
Solidification” Materials Science and Technology
pp.2183-2189(2001).
[2] D. R. Johnson, H. Inui, M. Yamaguchi, “Directional
solidification and microstructural control of the
TiAl/Ti3Al lamellar microstructure in TiAl-Si
alloys”, Acta Materialia, Volume 44, Issue 6, Pages
2523-2535(1996).
[3] S.E. Kim, Y.T. Lee, M.H. oh, H. Inui, M. Yamaguchi,
“Directional solidification of TiAl-Si alloys using a
polycrystalline seed”, Intermetallics, Volume 8,
Issue 4, Pages 399-405(2000).
[4] M. Yamaguchi, D. R. Johnson, H. N. Lee, H. Inui,
“Directional solidification of TiAl-base alloys”,
Intermetallics, Volume 8, Issues 5-6, Pages 511-517
(2000).
[5] M. Gündüz, E. Çadırlı, “ Directional Solidification
of aluminium–copper alloys”, Materials Science and
Engineering A, Volume 327, Issue 2, Pages 167-185
(2002).
[6] D. Eskin, Q. Du, D. Ruvalcaba, L. Katgerman,
“Experimental study of structure formation in binary
Al–Cu alloys at different cooling rates”, Materials
Science and Engineering: A, Volume 405, Issues 1-2,
Pages 1-10(2005).
[7] H.Kaya, E. Çadirli, M. Gündüz, “Dendritic Growth in
an Aluminium-Silicon Alloy”, ASM International(2006)
[8] J.E. Spinelli, I.L. Ferreira, A. Garcia, “Influence
of melt convection on the columnar to equiaxed
transition and microstructure of downward unsteady-
state directionally solidified Sn-Pb alloys”, Journal
of Alloys and Compounds 384 pp.217-226(2004).
[9] H.B. Dong, P.D. Lee, “Simulation of the columnar-to-
equiaxed transition in directionally solidified Al–Cu
alloys”, Acta Materialia, Volume 53, Issue 3, Pages
659-668(2005).
[10] Kozo Fujiwara, Yoshikazu Obinata, Toru Ujihara,
Noritaka Usami, Gen Sazaki, Kazuo Nakajima, “Grain
growth behaviors of polycrystalline silicon during
melt growth processes”, Journal of Crystal Growth,
Volume 266, Issue 4, Pages 441-448(2004)
[11] K. Fujiwara, W. Pan, K. Sawada, M. Tokairin, N.
Usami, Y. Nose, A. Nomura, T. Shishido, K. Nakajima,
“Directional growth method to obtain high quality
polycrystalline silicon from its melt”, Journal of
Crystal Growth, Volume 292, Issue 2, Pages 282-285
(2006)
[12] 趙國傑,“凝固參數對於方向性成長之結構參數影響分析”,
國立成功大學工程科學研究所碩士論文(2007)
[13] 林盈佐,“凝固顯微組織與模式分析”,國立成功大學工程科
學所碩士論文(1998)
[14] W. Kurz, D.J. Fisher, “Fundamentals of
Solidification”,Tran Tech Publication Ltd,Switzerland
(1998)
[15] William F. Smith 原著 ; 李春穎,許煙明,陳忠仁 譯,
“材料科學與工程”,高立圖書有限公司,(1994)
[16] 林五祥,“熱與溶質效應對於錫鉛合金方向性凝固之影響分
析”,國立成功大學工程科學所碩士論文(2006)
[17] 謝定華,“網狀晶之穩態成長模式分析”,國立成功大學工程
科學所碩士論文(2003)
[18] 林明獻,“矽晶圓半導體材料技術”,全華圖書股份有限公
司,(2007)
[19] Otávio Lima Rocha, Cláudio Alves Siqueira, Amauri
Garcia, “Cellular/dendritic transition during
unsteady-state unidirectional solidification of Sn–
Pb alloys”, Materials Science and Engineering A,
Volume 347, Issues 1-2, Pages 59-69(2003)
[20] 韋孟育,“材料實驗方法-金相分析技術”,全華科技圖書股
份有限公司,p14(1990)
[21] E. Çadirli, M. Gündüz, “The Directional
Solidification of Pb-Sn Alloys”, Journal of
Materials Science 35, pp.3837-3848 (2000).
[22] Ming Li, Takassuke Mori, and Hajime Iwasaki, “Effect
of Solute Convection on The Primary Arm Spacings of
Pb-Sn Binary Alloys During Upward Directional
Solidification”, Materials Science and Engineering
A265, pp.217-223 (1999).
[23] “Standard Methods for Estimationg the Average Grain
Size of metals”, Annual Books of ASTM Standards
vol03, ASTM, USA, pp.120-156(1984).