簡易檢索 / 詳目顯示

研究生: 李亞蒨
Lee, Ya-Chien
論文名稱: 應用掃描線演算法萃取光達資料中的平面特徵之研究
A Study of Planar Feature Extraction from Airborne Lidar Data Using Scan Line Segmentation Algorithm
指導教授: 尤瑞哲
You, Rey-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 64
中文關鍵詞: 光達掃描線區域成長
外文關鍵詞: lidar, scan line, regin growing
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,空載光達技術已經成為一項可快速獲得空間資料的工具。在空載光達點雲資料中,並不直接顯示任何物體的點、線和面等幾何特徵資訊,因此需要利用適當的演算法以獲得在三維空間中所需要的幾何特徵資訊。在光達資料中,平面特徵在重建三維房屋模型中是一項重要的資訊,如何正確地找出平面資訊是一個重要的步驟。然而,光達點雲資料量相當龐大,有效率地進行資料的處理是一個很重要的關鍵。掃描線演算法應用在影像處理上以擷取幾何資訊由來已久,它利用線段進行區域成長取代點的區域成長進行平面的萃取,目的是減少了資料量,使演算法具有速度快的優點,同時又能得到良好的結果。本研究改良掃描線演算法以應用在離散光達點雲進行平面的萃取。本研究採用誤差傳播方式得到掃描線演算法所需的各種門檻值,針對真實光達點雲資料進行平面特徵的萃取,並與試誤法所到的最佳門檻值進行比較分析。實驗結果顯示本研究所提方法相當可行,也可以得到良好的平面萃取結果。

    Recently, airborne LiDAR technique has become a popular tool to obtain spatial data. However, there is no explicit geometric information in Lidar point clouds. For spatial applications, for example, 3D building model construction, we have to use adequate algorithm to obtain geometric features from Lidar data. It is a substantial step to extract planar features of buildings from LiDAR data. Due to the large amounts of Lidar data, to find an efficient algorithm for quickly and correctly extracting planar features is very important. Scan line algorithms for geometric information extraction in image processing have been a long time. Instead of individual pixels, the algorithm makes use of line segments as the seed regions in region growing process in order to increase the computational efficiency. This algorithm provides not only high-speed processing but also excellent results. In this study, we slightly modify the scan line algorithm to extract the planar surfaces from discrete Lidar point clouds. This study uses the error propagation law to obtain the thresholds while using scan line segmentation, and compares them with the thresholds which are derived by the try-and-error method. The results show that the refined scan line algorithm developed in the study has high computational efficiency and availability.

    中文摘要....................................................Ⅰ 英文摘要....................................................Ⅱ 誌謝........................................................Ⅲ 目錄........................................................IV 表目錄......................................................Ⅶ 圖目錄......................................................Ⅷ 第一章 緒論..................................................1 1.1 前言................................................1 1.2 研究動機與目的......................................3 1.3 研究方法與流程......................................5 1.4 論文架構............................................7 第二章 空載光達與面特徵萃取..................................9 2.1 空載光達 ...........................................9 2.1.1雷射測距感測器................................10 2.1.2全球導航衛星系統..............................11 2.1.3慣性導航系統..................................12 2.2 光達平面特徵萃取...................................13 2.2.1群聚法........................................14 2.2.2網格法........................................15 2.2.3基於掃描線的演算法............................16 2.2.4 RANSAC....................................... 17 2.2.5張量投票法....................................18 第三章 掃描線演算法.........................................19 3.1 掃描線演算法基本概念及流程..........................19 3.2 線段萃取............................................20 3.3 濾除地面點..........................................23 3.4 區域成長............................................24 3.4.1 種子區的選擇..................................24 3.4.2 區域成長......................................28 第四章 實驗與分析...........................................31 4.1 實驗資料介紹........................................31 4.2 研究方法之各門檻值之討論............................32 4.2.1 線段萃取門檻值................................32 4.2.2 種子區門檻值..................................34 4.2.2.1 兩平面法向量的夾角....................34 4.2.2.2 點到面的垂直距離......................36 4.2.3 區域成長之線段合併門檻值......................37 4.3 討論................................................38 4.3.1 水平屋頂面與簡易山形屋頂面測試................40 4.3.2 複雜山形屋頂面測試............................40 4.3.3 非平面屋頂面測試..............................43 4.3.4 非正常表面之測試..............................43 4.3.5 第一類型錯誤範例..............................44 4.3.6 第二類型錯誤範例..............................46 4.3.7 碎型錯誤之範例................................46 4.3.8 多平面合成同一平面之錯誤範例..................47 4.4 理論門檻值與試誤法門檻值之萃取結果比較..............49 4.5 與張量頭投票法之萃取結果比較........................51 第五章 結論與建議...........................................55 參考文獻....................................................57

    王淼、湯凱佩和曾義星(2005)。 “光達資料八分樹結構化於平面特徵萃取”,航測及遙測學刊,第十卷,第一期,第59-70頁。

    尤瑞哲和游勳喬(2003)。 “空載雷射掃描安置角自動化率定”,航測及遙測學刊,第八卷,第三期,第15-32頁。

    尤瑞哲、游勳喬和林聰成。(2006)“穩健線性預估法應用於空載光達點雲過濾之研究”,測量工程,第四十八卷,第一、二期,第63-80 頁。

    朱家海(2008)。慣性導航。國防工業出版社。北京。

    邵怡誠和陳良健(2003)。“利用數學形態學方法於高程空間區隔地貌與地物之研究”,航測及遙測學刊,第八卷第一期,第1-14頁。

    施永富(2002)。測量學。三民書局股份有限公司。台北。

    陳良健和郭志奕(2006)。“結合光達資料與大比例尺向量圖重建三維建物模型”, 航測及遙測學刊, 第十一卷第四期,第361-380 頁。

    童俊雄 (2005)。”空載光達系統誤差分析與航帶平差方法之探討”。國立成功 大學測量及空間資訊學系碩士論文,2005。

    張智安和陳良健(2005)。“整合光達資料與高解析衛星影像於建物偵測”。航測及遙測學刊,第十卷第四期,第361-371 頁。

    賴彥中(2004)。“結合光達資料與數位空照影像重建三維建物模型”。國立中央大學土木工程研究所碩士論文。

    賴泓瑞(2009)。“以模型樣板維基礎之建物三維點雲建模演算法”。國立成功大學測量及 空間資訊研究所碩士論文,2009

    劉進金(2005)。空載光達技術之發展現況空載光達技術之發展現況,「國內高解析空載及衛載遙測之現況及未來」研討會,93年10月8日(星期五)。行政院農業委員會及國立中央大學太空及遙測研究中心共同主辦。

    Ackermann, F. (1999). “Airborne laser scanning—present status and future experiments”. ISPRS Journal of Photo-grammetry and Remote Sensing, vol. 54, pp. 64-67

    Ameri, B. and Fritsch, D. (2000). “Automatic 3D building reconstruction using plane-roof structures.” Published by the ASPRS, Washington DC.

    Baltsavias, E.P. (1999b). “Airborne Laser Scanning: Existing Systems and Firms and Other Resources.” ISPRS Journal of Photogrammetry & Remote Sensing, Vol 54, pp. 164-198.

    Boulaassal, H., Landes, T., Grussenmeyer, P., Tarsha-Kurdi, F. (2007). “Automatic segmentation of building facades using terrestrial laser data".ISPRS Proceedings.” Workshop Laser scanning. Espoo, Finland, September 12-14.

    Douglas, D.H. and Peucker, T.K. (1973). “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature.” The Canadian Cartographer, 10(2), pp. 112–122.

    Duda, R.O. and Hart, P.E. (1972). Pattern Classification and Scene Analysis. Wiley, New York.

    Dunham, J.G. (1986). “Optimum uniform piecewise linear approximation of planar curves.” IEEE Transactions on PAMI 8 (1) (1986) 67–75.

    Filin, S. (2002). “Surface clustering from airborne laser scanning data.” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV, 3A, Graz,117-124.

    Fischler, M. A. and Bolles, R. C. (1981). “Random Sample Consensus: A Paradigm for Model fitting with application to Image Analysis and Automated Cartography. ” Communications of the ACM, 24(6): 381-395.

    Flood, M. and Gutelius, B. (1997). “Commercial implications of topo- graphic terrain mapping using scanning airborne laser radar. ” Photogrammetric Engineering and Remote Sensing, Vol.63, pp.327.

    Geibel, R. and Stilla, U. (2000). “Segmentation of laser altimetry data for building reconstruction: different procedures and comparison.” Inte- rnational Archives of Photogrammetry and Remote Sensing Sensing, vol.33,part B3, pp. 326-334.

    Gorte, B. (2002). “Segmentation of TIN-structured surface models.” The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol 34, part 4, pp.465-469.

    Haala, N. and Brenner, C. (1997). “Generation of 3D city models from airborne laser scanning data”. Proceedings of 3rd. EARSEL Work- shop on Lidar remote sensing on land and area, Tallinn / Estonia, 17-19, July, pp.105-112.

    Han, S.H., Lee, J.H., and Yu, K.Y. (2007). “An approach for segmentation of airborne laser point clouds utilizing scan-line characteristics. ” ETRI Journal, vol.29, no.5, pp.641-648.

    Hebel, M. and Stilla, U. (2008). “Pre-classification of points and segmentation of urban objects by scan line analysis of airborne Lidar data. The International Archives of the Photogrammetry.” Remote Sensing and Spatial Information Sciences, Vol. XXXVII. Part B3a. Beijing 2008.

    Hofmann, A. D. (2004). “Analysis of TIN-structure parameter spaces in airborne laser scanner data for 3-D building model generation”, IAPRS International Archives of Photogrammetry and Remote Sensing, Vol. 35, Part B3, pp. 302-307.

    Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D., Bowyer, K., Eggert, D., Fitzgibbon, A., Fisher, R.. (1996). “An experimental comparison of range image segmentation algorithms.” IEEE Trans. Pattern Anal. Machine Intell., vol. 18, pp. 673-689.

    Jiang, X.Y., Bunke, H. (1994). “Fast Segmentation of Range Images into Planar Regions by Scan Line Grouping.” Machine Vision and Applications , vol. 7, no. 2, pp. 115-122.

    Kraus, K., and Pfeifer, N. (1998). “Determination of terrain models in wooded areas with aerial laser scanner data.” ISPRS Journal of Photogrammetry and Remote Sensin . Vol.53, pp. 193-203.

    Medioni, G., Lee, M.S., and Tang, C.K. (2000). “A Computational Framework for Seg-mentation and Grouping.” Elsevier Science B.V., Amsterdam.

    Overby, J., Bodum, L., Kjems, E. and Iisoe, P.M. (2004). Automatic 3D building reconstruction from airborne laser scanning and cadastral data using Hough transform. International Archives of Photogrammetry and Remote Sensing, 35(B3): 296-301.

    Pavlidis, T. and S. L. Horowitz. (1974) “Segmentation of Plane Curves.” IEEE Trans. on Computers, C-23 (1974), pp. 860-870. GC:153.

    Roggero, M., (2002). “Object segmentation with region growing and principal components analysis.” Proceeding of ISPRS Commission III, Symposium 2002 on Photogrammetric Computer Vision, part A, Graz, Austria, 9-13 Sept, pp. 289-294.

    Sithole, G., 2005. Segmentation and classification of airborne laser scanner data. Ph.D. Thesis. Technical University of Delft, The Netherlands. Publications on Geodesy, 59. Publication of Netherlands Geodetic Commission. ISBN 90 6132 292 8. 184 p.

    Sithole, G., and Vosselman, G. (2003). “Automatic structure detection in a point cloud of an urban landscape. Proc. 2nd Joint Workshop on Remote Sensing and Data Fusion over Urban Areas” (Urban 2003), Berlin, Germany, May 22–23, pp. 67–71.

    Vosselman,G. (1999). “Building reconstruction using planar faces in very high density height data.” International Archives of Photogrammetry and Remote Sensing, 32, part 3/2W5, pp. 87-92.

    Vosselman, G. (2000). “Slope based filtering of laser altimetry data.” International Archives of the Photogrammetry and Remote Sensing, Vol. 33, Part B3, pp. 935– 942, 2000.

    Vosselman, G. and Dijkman, S. (2001). “3D Building model reconstruction from point clouds and ground plans.” International Archives of Photogrammetry and Remote Sensing, Vol. 34, Part 3-W4, pp. 37-43.

    Vosselman, G., Gorte, B.G.H., Sithole, G., Rabbani, T. (2004). Recognising structure in laser scanner point clouds. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,vol 46, part 8/W2, pp. 33–38.

    Vosselman, G. and Mass, H.G. (2001). “Adjustment and Filtering of Raw Laser Altimetry Data.” Editor Kennert Torlegard, Proceedings of OEEPE workshop on airborne laserscanning and interferometric SAR for detailed digital elevation models, 1-3March, Royal Institute of Technology Department of Geodesy and Photogrammetry 100 Stockholm.Stockholm. 62-73.

    Wehr, A. and Lohr, U. (1999). “Airborne laser scanning - an introduction and overview.” ISPRS Journal of Photogrammetry & Remote Sensing, Vol 53, pp.68-82.

    You, R.J. and Lin, B.C. (2010). “Building feature extraction from airborne LIDAR data using tensor voting algorithm.” (Photogrammetric Engineering and Remote Sensing, in review)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE