| 研究生: |
湯岫澐 Tang, Hsiu-Yun |
|---|---|
| 論文名稱: |
以聲學漩渦鑷子於仿血管微流體裝置中捕獲與操控流動幹細胞之可行性研究 Feasibility Study of Trapping and Manipulating Flowing Stem Cells Using Acoustic Vortex Tweezer in Vessel Mimic Microfluidic Device |
| 指導教授: |
范景翔
Fan, Ching-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 超音波 、幹細胞療法 、聲鉗 、聲學漩渦 、捕捉 、生物粒子操控 |
| 外文關鍵詞: | Ultrasound, Stem cell therapy, Acoustic tweezer, Acoustic vortex, Trapping, Bioparticle manipulation |
| 相關次數: | 點閱:31 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中風是全球第二大死亡原因,其中缺血性中風佔70%,全球負擔也持續增加。目前的急性缺血性中風治療方法主要是靜脈內溶栓治療,但僅能適用於少數患者,且存在多重風險。並且在針對中風後的功能恢復的方面仍需要更有效的治療策略,幹細胞療法具有自我更新能力和多向分化潛力,被認為是治療多種疾病的重要再生方法。然而,現今的幹細胞遞送法,仍面臨高侵入性和低輸送效率(1-10%)的挑戰。而高血流速度會進一步降低幹細胞在目標部位的濃度與附著力,限制了其臨床應用和治療效果。此外,仍缺乏一種具備良好空間/時間分辨率的非侵入性策略來操縱血液循環中的幹細胞。為了解決這個問題,我們提出了一種基於聲學漩渦鑷子的技術,聲學漩渦鑷子的聲波因為相位差而沿波束方向產生破壞性干涉,形成螺旋傳播並生成環狀橫向聲場。該設備能夠產生淨力以非侵入性的方式捕獲幹細胞。通過顯微成像技術,可以實時定位在生理相關流速下累積的臍帶血間質幹細胞。我們成功使用5 MHz聲學漩渦鑷子在微流控裝置中捕獲了1和10 μm的微球及幹細胞,並確定了最佳的聲學參數為聲壓為700 kPa和60%的duty cycle。在靜場實驗中,微球在聲場中迅速旋轉,逐漸聚集並形成團簇。隨著捕獲時間增加,團簇尺寸不斷增大並最終穩定。在流場實驗中,流速越大,微球或是幹細胞的捕捉面積越小。我們的結果也顯示聲學漩渦鑷子可以在流場中累積幹細胞並進行操控,局部濃度可以提昇至少2倍左右。此外,我們監測了聲學漩渦鑷子對捕獲的幹細胞後短期和長期的活性,發現並沒有造成任何細胞損傷。我們提出的聲學漩渦鑷子不僅具備優異的生物相容性、具備良好空間解析度,並能在流場環境下捕捉和操控幹細胞,並提高其在目標部位的濃度,為幹細胞治療提供了一種創新的、具有潛在臨床應用價值的技術方案。
Stroke is the second leading cause of death worldwide, with ischemic stroke accounting for 70% of these cases, and the global burden continues to increase. Currently, the primary treatment for acute ischemic stroke is intravenous thrombolysis, but it is applicable only to a small percentage of patients and carries multiple risks. Furthermore, there is still an urgent need for more effective treatment strategies for functional restoration after a stroke. Stem cell therapy exhibits self-renewal capacity and multi-directional differentiation potential and is considered an important regenerative approach for treating several diseases. However, current stem cell delivery methods face challenges such as high invasiveness and low delivery efficiency (1-10%). Moreover, high blood flow velocities intrinsically caused lower stem cell concentration and adhesion at the targeted site, limiting their clinical application and treatment outcome. Besides, a non-invasive strategy with good spatial/ temporal resolutions capable of manipulating circulating stem cells remains lacking. To address this issue, we proposed a technology based on acoustic vortex tweezer (AVT). AVT generate destructive interference along the beam direction due to phase dislocations, resulting in spiral propagation and the formation of a ring-shaped lateral acoustic field. This device can generate net forces for noninvasive trapping of stem cells. The accumulated human umbilical cord blood mesenchymal stem cells in physiologically-relevant flow rates are located in real time by microscopic imaging. We have successfully utilized AVT to capture 1 μm and 10 μm microspheres and stem cells within a microfluidic device, optimizing the ultrasonic parameters to be acoustic pressure of 700 kPa and a 60% duty cycle. In static state experiments, microspheres rapidly rotated within the acoustic field, gradually clustered, and eventually stabilized as their cluster size increased with trapping time. In flow condition experiments, higher flow velocities reduced the trapping area for microspheres or stem cells. Our results demonstrate that AVT could effectively accumulate and manipulate stem cells under flow conditions, increasing the local concentration by at least 2-fold. Furthermore, we monitored the short-term and long-term viability of stem cells trapped by AVT and found no cell damage. Our proposed AVT is not only a biocompatible strategy with good spatial resolution, but also enables the trapping and manipulation of stem cells in flow environments, enhancing their concentration at the target site. This innovative technology offers a promising approach with potential clinical applications for stem cell therapy.
[1] J. Fan, X. Li, X. Yu, Z. Liu, Y. Jiang, Y. Fang, M. Zong, C. Suo, Q. Man, L. Xiong, Global Burden, Risk Factor Analysis, and Prediction Study of Ischemic Stroke, 1990–2030, Neurology 101(2) (2023) e137-e150.
[2] V.L. Feigin, M. Brainin, B. Norrving, S. Martins, R.L. Sacco, W. Hacke, M. Fisher, J. Pandian, P. Lindsay, World Stroke Organization (WSO): Global Stroke Fact Sheet 2022, International Journal of Stroke 17(1) (2022) 18-29.
[3] S.P. Michael, A.C. Carolyn, Management of acute ischemic stroke, BMJ 368 (2020) l6983.
[4] P.A. Lapchak, J.H. Zhang, The High Cost of Stroke and Stroke Cytoprotection Research, Translational Stroke Research 8(4) (2017) 307-317.
[5] J.M. Wardlaw, V. Murray, E. Berge, G. del Zoppo, P. Sandercock, R.L. Lindley, G. Cohen, Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis, The Lancet 379(9834) (2012) 2364-2372.
[6] F. Wang, H. Tang, J. Zhu, J.H. Zhang, Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke, Cell Transplantation 27(12) (2018) 1825-1834.
[7] J. De Meyer, J. Pryck, S. Hachimi-Idrissi, Stem cell therapy for ischemic stroke: from bench to bedside, International Journal of Critical Care and Emergency Medicine 4 (2018) 058.
[8] T. Yasuhara, S. Kawauchi, K. Kin, J. Morimoto, M. Kameda, T. Sasaki, B. Bonsack, C. Kingsbury, N. Tajiri, C.V. Borlongan, I. Date, Cell therapy for central nervous system disorders: Current obstacles to progress, CNS Neuroscience & Therapeutics 26(6) (2020) 595-602.
[9] G. Zhou, Y. Wang, S. Gao, X. Fu, Y. Cao, Y. Peng, J. Zhuang, J. Hu, A. Shao, L. Wang, Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies, Frontiers in Cell and Developmental Biology 9 (2021).
[10] S. Bae, K. Ma, T.H. Kim, E.S. Lee, K.T. Oh, E.-S. Park, K.C. Lee, Y.S. Youn, Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types, Biomaterials 33(5) (2012) 1536-1546.
[11] B. Achón Buil, C. Tackenberg, R. Rust, Editing a gateway for cell therapy across the blood-brain barrier, Brain 146(3) (2023) 823-841.
[12] J.Q. He, E.S. Sussman, G.K. Steinberg, Revisiting Stem Cell-Based Clinical Trials for Ischemic Stroke, Frontiers in Aging Neuroscience 12 (2020).
[13] T.E.G. Krueger, D.L.J. Thorek, S.R. Denmeade, J.T. Isaacs, W.N. Brennen, Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise, Stem Cells Transl Med 7(9) (2018) 651-663.
[14] S.H. Lee, H.Y. Kang, J.H. Kim, D.H. Park, Mannitol Augments the Effects of Systemical Stem Cell Transplantation without Increasing Cell Migration in a Stroke Animal Model, Tissue Eng Regen Med 17(5) (2020) 695-704.
[15] M.S. Salehi, A. Safari, S. Pandamooz, B. Jurek, E. Hooshmandi, M. Owjfard, M. Bayat, S.S. Zafarmand, J.A. Miyan, A. Borhani-Haghighi, The Beneficial Potential of Genetically Modified Stem Cells in the Treatment of Stroke: a Review, Stem Cell Reviews and Reports 18(2) (2022) 412-440.
[16] S. Zhang, B.B. Lachance, B. Moiz, X. Jia, Optimizing Stem Cell Therapy after Ischemic Brain Injury, J Stroke 22(3) (2020) 286-305.
[17] H. Naderi-Meshkin, A.R. Bahrami, H.R. Bidkhori, M. Mirahmadi, N. Ahmadiankia, Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy, Cell Biology International 39(1) (2015) 23-34.
[18] J. Wagner, T. Kean, R. Young, J.E. Dennis, A.I. Caplan, Optimizing mesenchymal stem cell-based therapeutics, Current Opinion in Biotechnology 20(5) (2009) 531-536.
[19] P. Walczak, J. Zhang, A.A. Gilad, D.A. Kedziorek, J. Ruiz-Cabello, R.G. Young, M.F. Pittenger, P.C. van Zijl, J. Huang, J.W. Bulte, Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia, Stroke 39(5) (2008) 1569-74.
[20] H. Yun, K. Kim, W.G. Lee, Cell manipulation in microfluidics, Biofabrication 5(2) (2013) 022001.
[21] Y. Deng, Y. Guo, B. Xu, Recent Development of Microfluidic Technology for Cell Trapping in Single Cell Analysis: A Review, Processes 8(10) (2020) 1253.
[22] M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, Y.-M. Li, Trapping red blood cells in living animals using optical tweezers, Nature Communications 4(1) (2013) 1768.
[23] A. Ozcelik, J. Rufo, F. Guo, Y. Gu, P. Li, J. Lata, T.J. Huang, Acoustic tweezers for the life sciences, Nat Methods 15(12) (2018) 1021-1028.
[24] W.-B. Shen, C. Plachez, O. Tsymbalyuk, N. Tsymbalyuk, S. Xu, A.M. Smith, S.L.J. Michel, D. Yarnell, R. Mullins, R.P. Gullapalli, A. Puche, J.M. Simard, P.S. Fishman, P. Yarowsky, Cell-Based Therapy in TBI: Magnetic Retention of Neural Stem Cells in Vivo, Cell Transplantation 25(6) (2016) 1085-1099.
[25] H. Cha, H. Fallahi, Y. Dai, D. Yuan, H. An, N.-T. Nguyen, J. Zhang, Multiphysics microfluidics for cell manipulation and separation: a review, Lab on a Chip 22(3) (2022) 423-444.
[26] C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, L. Sun, Dielectrophoresis for Bioparticle Manipulation, International Journal of Molecular Sciences 15(10) (2014) 18281-18309.
[27] M. Takeuchi, K. Nagasaka, M. Yoshida, Y. Kawata, Y. Miyagawa, S. Tago, H. Hiraike, O. Wada-Hiraike, K. Oda, Y. Osuga, T. Fujii, T. Ayabe, S.H. Kim, T. Fujii, On-chip immunofluorescence analysis of single cervical cells using an electroactive microwell array with barrier for cervical screening, Biomicrofluidics 13(4) (2019).
[28] M.A.M. Ali, K.K. Ostrikov, F.A. Khalid, B.Y. Majlis, A.A. Kayani, Active bioparticle manipulation in microfluidic systems, RSC advances 6(114) (2016) 113066-113094.
[29] H. Zhang, K.-K. Liu, Optical tweezers for single cells, Journal of The Royal Society Interface 5(24) (2008) 671-690.
[30] Acoustofluidics 5: Building microfluidic acoustic resonators, Lab on a Chip 12(4) (2012) 684-695.
[31] P. Augustsson, J.T. Karlsen, H.-W. Su, H. Bruus, J. Voldman, Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping, Nature Communications 7(1) (2016) 11556.
[32] F. Guo, Z. Mao, Y. Chen, Z. Xie, J.P. Lata, P. Li, L. Ren, J. Liu, J. Yang, M. Dao, S. Suresh, T.J. Huang, Three-dimensional manipulation of single cells using surface acoustic waves, Proceedings of the National Academy of Sciences 113(6) (2016) 1522-1527.
[33] D. Yin, G. Xu, M. Wang, M. Shen, T. Xu, X. Zhu, X. Shi, Effective cell trapping using PDMS microspheres in an acoustofluidic chip, Colloids and Surfaces B: Biointerfaces 157 (2017) 347-354.
[34] X. Ding, S.-C.S. Lin, B. Kiraly, H. Yue, S. Li, I.-K. Chiang, J. Shi, S.J. Benkovic, T.J. Huang, On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves, Proceedings of the National Academy of Sciences 109(28) (2012) 11105-11109.
[35] F. Guo, P. Li, J.B. French, Z. Mao, H. Zhao, S. Li, N. Nama, J.R. Fick, S.J. Benkovic, T.J. Huang, Controlling cell–cell interactions using surface acoustic waves, Proceedings of the National Academy of Sciences 112(1) (2015) 43-48.
[36] J. Lee, K.K. Shung, Radiation forces exerted on arbitrarily located sphere by acoustic tweezer, The Journal of the Acoustical Society of America 120(2) (2006) 1084-1094.
[37] J.Y. Hwang, C. Lee, K.H. Lam, H.H. Kim, J. Lee, K.K. Shung, Cell membrane deformation induced by a fibronectin-coated polystyrene microbead in a 200-MHz acoustic trap, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 61(3) (2014) 399-406.
[38] Y. Li, C. Lee, R. Chen, Q. Zhou, K.K. Shung, A feasibility study of in vivo applications of single beam acoustic tweezers, Applied Physics Letters 105(17) (2014).
[39] H.G. Lim, K.K. Shung, Quantification of Inter-Erythrocyte Forces with Ultra-High Frequency (410 MHz) Single Beam Acoustic Tweezer, Annals of Biomedical Engineering 45(9) (2017) 2174-2183.
[40] K.H. Lam, Y. Li, Y. Li, H.G. Lim, Q. Zhou, K.K. Shung, Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging, Scientific Reports 6(1) (2016) 37554.
[41] J.S. Jeong, J.W. Lee, C.Y. Lee, S.Y. Teh, A. Lee, K.K. Shung, Particle manipulation in a microfluidic channel using acoustic trap, Biomed Microdevices 13(4) (2011) 779-788.
[42] C. Hou, C. Fei, Z. Li, S. Zhang, J. Man, D. Chen, R. Wu, D. Li, Y. Yang, W. Feng, Optimized Backing Layers Design for High Frequency Broad Bandwidth Ultrasonic Transducer, IEEE Transactions on Biomedical Engineering 69(1) (2022) 475-481.
[43] M. Wiklund, R. Green, M. Ohlin, Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices, Lab on a Chip 12(14) (2012) 2438-2451.
[44] L. Meng, F. Cai, Q. Jin, L. Niu, C. Jiang, Z. Wang, J. Wu, H. Zheng, Acoustic aligning and trapping of microbubbles in an enclosed PDMS microfluidic device, Sensors and Actuators B: Chemical 160(1) (2011) 1599-1605.
[45] D.J. Collins, B.L. Khoo, Z. Ma, A. Winkler, R. Weser, H. Schmidt, J. Han, Y. Ai, Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming, Lab on a Chip 17(10) (2017) 1769-1777.
[46] M. Baudoin, J.-L. Thomas, R.A. Sahely, J.-C. Gerbedoen, Z. Gong, A. Sivery, O.B. Matar, N. Smagin, P. Favreau, A. Vlandas, Spatially selective manipulation of cells with single-beam acoustical tweezers, Nature Communications 11(1) (2020) 4244.
[47] J. Li, A. Crivoi, X. Peng, L. Shen, Y. Pu, Z. Fan, S.A. Cummer, Three dimensional acoustic tweezers with vortex streaming, Communications Physics 4(1) (2021) 113.
[48] M.A. Ghanem, A.D. Maxwell, Y.-N. Wang, B.W. Cunitz, V.A. Khokhlova, O.A. Sapozhnikov, M.R. Bailey, Noninvasive acoustic manipulation of objects in a living body, Proceedings of the National Academy of Sciences 117(29) (2020) 16848-16855.
[49] J. Heo, W. Choi, J. Key, I. Youn, S. Han, Single-channel acoustic vortex tweezer with attachable fan-shaped holographic lens, International Journal of Mechanical Sciences 260 (2023) 108635.
[50] S.-T. Kang, C.-K. Yeh, Potential-well model in acoustic tweezers, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 57(6) (2010) 1451-1459.
[51] W.-C. Lo, C.-H. Fan, Y.-J. Ho, C.-W. Lin, C.-K. Yeh, Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles, Proceedings of the National Academy of Sciences 118(4) (2021) e2023188118.
[52] H. Liu, S. Reiter, X. Zhou, H. Chen, Y. Ou, C. Lenahan, Y. He, Insight into the mechanisms and the challenges on stem cell-based therapies for cerebral ischemic stroke, Frontiers in Cellular Neuroscience 15 (2021) 637210.
[53] K. Ziółkowska, R. Kwapiszewski, Z. Brzózka, Microfluidic devices as tools for mimicking the in vivo environment, New Journal of Chemistry 35(5) (2011) 979-990.
[54] S.M. Woodside, B.D. Bowen, J.M. Piret, Measurement of ultrasonic forces for particle–liquid separations, AIChE Journal 43(7) (1997) 1727-1736.
[55] C. Drobek, J. Meyer, R. Mau, A. Wolff, K. Peters, H. Seitz, Volumetric mass density measurements of mesenchymal stem cells in suspension using a density meter, Iscience 26(1) (2023).
[56] G.P. Gautam, Manipulation of Particles and Fluid Using Bulk Acoustic Waves in Microfluidics, New Mexico Institute of Mining and Technology2019.
[57] W.F. Boron, E.L. Boulpaep, Medical physiology E-book, Elsevier Health Sciences2016.
[58] J.A. de Mesquita, Jr., E. Bouskela, E. Wajnberg, P.L. de Melo, Improved instrumentation for blood flow velocity measurements in the microcirculation of small animals, Review of Scientific Instruments 78(2) (2007).
[59] C.L. Yao, S.M. Hwang, Immortalization of human mesenchymal stromal cells with telomerase and red fluorescence protein expression, Methods Mol Biol 879 (2012) 471-8.
[60] M. Kawabori, H. Shichinohe, S. Kuroda, K. Houkin, Clinical Trials of Stem Cell Therapy for Cerebral Ischemic Stroke, International Journal of Molecular Sciences 21(19) (2020) 7380.
[61] S. Banerjee, P. Bentley, M. Hamady, S. Marley, J. Davis, A. Shlebak, J. Nicholls, D.A. Williamson, S.L. Jensen, M. Gordon, N. Habib, J. Chataway, Intra-Arterial Immunoselected CD34+ Stem Cells for Acute Ischemic Stroke, Stem Cells Translational Medicine 3(11) (2014) 1322-1330.
[62] D.T. Laskowitz, E.R. Bennett, R.J. Durham, J.J. Volpi, J.R. Wiese, M. Frankel, E. Shpall, J.M. Wilson, J. Troy, J. Kurtzberg, Allogeneic Umbilical Cord Blood Infusion for Adults with Ischemic Stroke: Clinical Outcomes from a Phase I Safety Study, Stem Cells Translational Medicine 7(7) (2018) 521-529.
[63] S. Guo, Z. Ya, P. Wu, M. Wan, A review on acoustic vortices: Generation, characterization, applications and perspectives, Journal of Applied Physics 132(21) (2022).
[64] G.-F. Li, H.-X. Zhao, H. Zhou, F. Yan, J.-Y. Wang, C.-X. Xu, C.-Z. Wang, L.-L. Niu, L. Meng, S. Wu, H.-L. Zhang, W.-B. Qiu, H.-R. Zheng, Improved Anatomical Specificity of Non-invasive Neuro-stimulation by High Frequency (5 MHz) Ultrasound, Scientific Reports 6(1) (2016) 24738.
[65] K.F. Bing, G.P. Howles, Y. Qi, M.L. Palmeri, K.R. Nightingale, Blood-Brain Barrier (BBB) Disruption Using a Diagnostic Ultrasound Scanner and Definity® in Mice, Ultrasound in Medicine & Biology 35(8) (2009) 1298-1308.
[66] P.B. Muller, R. Barnkob, M.J.H. Jensen, H. Bruus, A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces, Lab on a Chip 12(22) (2012) 4617-4627.
[67] S. Liu, Y. Yang, Z. Ni, X. Guo, L. Luo, J. Tu, D. Zhang, Zhang, Jie, Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields, Sensors 17(7) (2017) 1664.
[68] J.Y. Hwang, J. Kim, J.M. Park, C. Lee, H. Jung, J. Lee, K.K. Shung, Cell Deformation by Single-beam Acoustic Trapping: A Promising Tool for Measurements of Cell Mechanics, Scientific Reports 6(1) (2016) 27238.
[69] M. Ohlin, I. Iranmanesh, A.E. Christakou, M. Wiklund, Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip, Lab on a Chip 15(16) (2015) 3341-3349.
[70] B. Raiton, J.R. McLaughlan, S. Harput, P.R. Smith, D.M.J. Cowell, S. Freear, The capture of flowing microbubbles with an ultrasonic tap using acoustic radiation force, Applied Physics Letters 101(4) (2012).
[71] W.C. Lo, Y.L. Huang, C.H. Fan, C.K. Yeh, 3-D Ultrafast Ultrasound Imaging of Microbubbles Trapped Using an Acoustic Vortex, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 68(12) (2021) 3507-3514.
[72] A. Burgess, C.A. Ayala-Grosso, M. Ganguly, J.F. Jordão, I. Aubert, K. Hynynen, Targeted Delivery of Neural Stem Cells to the Brain Using MRI-Guided Focused Ultrasound to Disrupt the Blood-Brain Barrier, PLOS ONE 6(11) (2011) e27877.
[73] W.-B. Shen, P. Anastasiadis, B. Nguyen, D. Yarnell, P.J. Yarowsky, V. Frenkel, P.S. Fishman, Magnetic Enhancement of Stem Cell–Targeted Delivery into the Brain Following MR-Guided Focused Ultrasound for Opening the Blood–Brain Barrier, Cell Transplantation 26(7) (2017) 1235-1246.
[74] H. Cui, Q. Zhu, Q. Xie, Z. Liu, Y. Gao, Y. He, X. Tan, Y. Xu, Low intensity ultrasound targeted microbubble destruction assists MSCs delivery and improves neural function in brain ischaemic rats, Journal of Drug Targeting 28(3) (2020) 320-329.
[75] K. Chen, M. Wu, F. Guo, P. Li, C.Y. Chan, Z. Mao, S. Li, L. Ren, R. Zhang, T.J. Huang, Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers, Lab on a Chip 16(14) (2016) 2636-2643.