| 研究生: |
林姿菱 Lin, Tz-Ling |
|---|---|
| 論文名稱: |
矽膠-水介面動態行為之分子動力學模擬 Molecular Dynamic Simulation of the Dynamic Behavior at Silica-Water Interface |
| 指導教授: |
賴新一
Lai, Hsin-Yi 陳朝光 Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 分子動力學 、吸附 、矽膠 、水 |
| 外文關鍵詞: | molecular dynamics, adsorption, silica, water |
| 相關次數: | 點閱:131 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著能源世界經濟的發展、能源有限及環保意識的提升,如何有效利用能源又能減少環境之汙染為目前主要關心議題。壓縮式冷凍循環為目前主要冷凍循環之一,但其使用之冷媒對環境有所破壞,所以壓縮式冷凍循環系統將會被淘汰,必須使用其他冷凍循環系統來替代壓縮式冷凍循環,而固體吸附式冷凍循環剛好可以解決壓縮式其缺點,
本文以吸附式製冷之原理為出發點,目前主要吸附式冷凍循環主要採用之吸附劑及冷媒為矽膠與水,吾人採用COMPASS力場探討矽膠-水為吸附劑的冷媒組合,首先吾人利用穩態分子動力學分析不同矽膠介面(親水性或疏水性)吸附過程與其物理性質,現今吸附劑,在吸附飽和後,利用提供高溫能量使水氣分子脫附於矽膠,本文高溫系統模擬其脫附過程與其物理性質,應用水分子擴散動力學分析解釋其吸附與脫附之效果,模擬結果顯示其親水性吸附效果較佳,但在高溫脫附時,卻沒疏水性效果好。
非平衡分子動力學數值模擬方式觀察矽膠-水系統的不同介面(親水性或疏水性)熱傳現象,利用邊界溫度控制方式或者輸入能量方式,觀察其能量傳遞過程,本文模擬結果顯示,因為介面性質會影響其能量傳遞,其親水性表面因為有氫鍵關係,使其熱阻降低,有助於能量傳遞。
由上述兩種方式探討固體吸附式冷凍循環之吸附床,利用分子動力學探討水分子與矽膠之關係,建立吸附劑與水分子之模型,並且利用數值分析,探討其動力性質,為吸附劑之開發提供一個降低實驗成本所需之研究方法。
As the economy develops and the issues of the energy shortage and environmental pollution get attention, how to use energy effectively and reduce pollution of the environment are currently the main issues. Compressible refrigeration cycle system is main refrigeration cycle nowadays, but the refrigerant which is used in compressible refrigeration cycle system has damage to the environment. One day the compressible refrigeration cycle system will be eliminated. So it is imminent to use other refrigeration cycle to replace the compressible refrigeration cycle system. Nevertheless, the solid adsorption refrigeration cycle can solve the problems which Compressible refrigeration cycle cause.
In this study, molecular dynamics simulation with compass forcefield is used to investigate the silica-water interface. First, the equilibrium molecular dynamics simulation is used to analysis the different interface silica systems (hydrophilic and hydrophobic interface). The result predicts the dynamic physical properties. In present, using high temperature (high energy) leads to desorption. Applying water diffusion dynamics analysis explains the effect of adsorption and desorption, the results show that its hydrophilic interface adsorption is better, but in the high-temperature desorption, hydrophobic interface is better.
Second, non-equilibrium molecular dynamics simulation methods is used to observe silica and water system in different interfaces (hydrophilic or hydrophobic) heat transfer phenomena by controlling the boundary temperature or using energy impulse to observe the energy transfer process, the results show that because the interface may affect the energy transfer, the hydrophilic interface which has hydrobond releases thermal resistance.
1 Alder, B.J., and Wainwright, T.E.,“Phase Transition for a Hard Sphere System”, J.Chem. Phys., Vol. 27, 1208~1209, 1957.
2 Alder, B.J., and Wainwright, T.E.,“Studies in Molecular Dynamics. I. General Method”, J.Chem. Phys., Vol. 31, 459~466, 1959.
3 Anatoli A. Milischuk, and Branka M. Ladanyi, “Structure and dynamics of water confined in silica nanopores”, The Journal of Chemical Physics, Vol. 135(17), 174709, 2011.
4 Anh Phan, Tuan A. Ho, D. R. Cole, and A. Striolo, “Molecular Structure and Dynamics in Thin Water Films at Metal
Oxide Surfaces: Magnesium, Aluminum, and Silicon Oxide Surfaces”, J. Phys. Chem. C, Vol. 116(30), 15962~15973, 2012.
5 Barler, J.A., and Watts, R.O., “Structure of Water : A Monte Carlo Caculation”, Phys. Chem. Lett, Vol. 3, 144~145, 1969.
6 Benoit Coasne et al,“Effect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study”, SENSORS, Vol. 13(7), pp. 9388~9395, 2013.
7 Berendsen, H.J.C. et al , “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., Vol. 81, 3684, 1984.
8 Changwook Jeong, Supriyo Datta and Mark Lundstrom,“Thermal conductivity of bulk and thin-film silicon: A Landauer approach”, AIP, Vol. 111, pp.093708~093708-6, 2012.
9 Changwook Jeong, Supriyo Datta, and Mark Lundstrom, “Thermal conductivity of bulk and thin-film silicon: A Landauer approach”, Journal of Applied Physics, Vol. 111, 093708, 2012.
10 Claus Mischler, Walter Kob, and Kurt Binder, “Classical and ab initio molecular dynamic simulation of an amorphous silica surface”, Computer Physics Communications, Vol. 147, 222~225, 2002.
11 Coasne, B., Galarneau, A., Pellenq, R.J., “Adsorption, intrusion and freezing in porous silica: the view from the nanoscale”, Chem. Soc. Rev., Vol. 42(9), 4141~4171, 2013.
12 Dimitrios Argyris, Naga Rajesh Tummala, and Alberto Striolo, “Molecular Structure and Dynamics in Thin Water Films at the Silica and Graphite Surfaces”, J. Phys. Chem. C, Vol. 112(35), 13587~13599, 2008.
13 Dimitrios, A., David, R.C., and Alberto, S., “Dynamic Behavior of Interfacial Water at the Silica Surface”,J. Phys. Chem. C., Vol. 113(45), 19591~19600, 2009.
14 Eduardo R. Cruz-Chu,Aleksei Aksimentiev,and Klaus Schulten, “Water-Silica Force Field for Simulating Nanodevices”, J. Phys. Chem. B, Vol. 110(43), 21497~21508, 2006.
15 Florian Muller-Plathe and Patrice Bordat1“Reverse Non-equilibrium Molecular Dynamics.”, Lecture Notes in Physics, Vol. 640, pp.310-26, 2004.
16 H. J. C. Berendsen,* J. R. Grigera,t and T. P. Straatsma, “The Missing Term in Effective Pair Potentialst”, J. Phys. Chem., Vol. 91, 6269~6271, 1987.
17 H. Zhu, A. Ghoufi, A. Szymczyk, B.Balannec, and D. Morineau, “Anomalous Dielectric Behavior of Nanoconfined Electrolytic Solutions”, Phys. Rev. Lett.Vol. 109(10), 107801,2012.
18 Haibo Fan, Kai Zhang and Yuen, M.M.F.,“Effect of defects on thermal performance of carbon nanotube investigated by molecular dynamics simulation”, Proceedings, 8th EMAP, Kowloon, China.
19 Haile, J.M., “Molecular Dynamic Simuation: elementary methods”, Wiley, New York, 1997.
20 Harp, G.D., and Berne, B.J., “Linear‐ and Angular‐Momentum Autocorrelation Functions in Diatomic Liquids”, J.Chem. Phys., vol. 49, 1249~1254, 1968.
21 Harp, G.D., and Berne, B.J., “Time Correlation Functions, Memory Functions, and Molecular Dynamics”, Phys. Rev. A, vol. 2, 975~996, 1970.
22 Hideo Ohno, Shinji Kohara, Norimasa Umesaki, and Kentaro Suzuya, “High-energy X-ray diffraction studies of non-crystalline materials”, Journal of Non-Crystalline Solids, Vol. 293, 125~135, 2011.
23 Hui Zhang, Ali A. Hassanali, Yun Kyung Shin, Chris Knight, and Sherwin J. Singer, “The water–amorphous silica interface: Analysis of the Stern layer and
surface conduction”, The Journal of Chemical Physics, Vol. 134, 024705, 2011.
24 Ian, C. B., and Carl, I.S., “Molecular Dynamics Simulations of Water Structure and Diffusion in Silica Nanopores”, J. Phys. Chem. C, Vol. 116(21), 11556~11564, 2012.
25 J.J. Nicolasa, K.E. Gubbinsa, W.B. Streetta, and D.J. Tildesleya, “Equation of state for the Lennard-Jones fluid”, Mol. Phys., Vol. 37, 1429~1454, 1979.
26 Javier V. Goicochea et al,“Surface Functionalization Mechanisms of Enhancing Heat Transfer at Solid-Liquid Interfaces”, Journal of Heat Transfer-Transactions of The ASME, Vol. 133, pp.082401~082401-6, 2011.
27 Javier V. Goicochea, Ming Hu. Brouno, M. and Dimos, P., “Surface Functionalization Mechanisms of Enhancing Heat Transfer at Solid-Liquid Interfaces”, Journal of Heat Transfer, Vol. 133(8), 082401, 2011.
28 Jianwei Zhang et al,“Nano-engineering thermal transport performance of carbon nanotube networks with polymer intercalation: a molecular dynamics study”, Phys.Chem.Chem.Phys., Vol. 16(9), pp.4378~4385. 2014.
29 Jie Yang, Yi Ren, and An-min Tian, “COMPASS Force Field for 14 Inorganic Molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO,
CO, CO2, NO2, CS2, and SO2, in Liquid Phases”, J. Phys. Chem. B, Vol. 104, 4951~4957, 2000.
30 Jin-Wu Jiang, Jie Chen, Jian-Sheng Wang, and Baowen Li,“Edge states induce boundary temperature jump in molecular dynamics simulation
of heat conduction”, PhysRevB, Vol. 80(5), pp.052301, 2009.
31 Joachim K. Floess , Sohail Murad, “Molecular simulations of the competitive adsorption of siloxanes and water on amorphous silica surfaces as a function of temperature”, Chemical Physics Letters, Vol. 516, 216~219, 2011.
32 Joseph L., “Consequences of zero-point motion to the radial distribution function of amorphous silicon”, J. Phys.: Condens. Matter, Vol. 66, S5165, 2004.
33 Joseph, C.F., Hansan, M.A., Ananth, Y.G., Adri, C.T., Sagar, A.P, “A reactive molecular dynamics simulation of the silica-water interface”, J. Chem. Phys.Vol. 132(17), 174704,2010.
34 Michal Zawierta, Bartosz Platek, Tomasz Falat and Jan Felba, “Coarse Grained Molecular Dynamics Study of Heat Transfer in Thermal Interface Materials”, Proceedings, 36th ISSE, Alba Iulia, Romania.
35 Min Chan Kim, “First principle quantum calculation of the hydroxylation of 2-member ring defect on the amorphous silica surfaces”, Journal of Industrial and Engineering Chemistry, Vol. 19(3), 752~755, 2013.
36 Ming Hu et al,“Water Nanoconfinement Induced Thermal Enhancement at Hydrophilic Quartz Interfaces”, NANO LETTERS, Vol. 10, pp.279~285, 2010.
37 Ming Hu, Javier V. Goicochea, Bruno Michel, and Dimos Poulikakos,, “Water Nanoconfinement Induced Thermal Enhancement at Hydrophilic Quartz Interfaces”, Nano Lett.,Vol. 10, 279~285, 2010.
38 Müller-Plathe, “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity”, The Journal of Chemical Physics, Vol. 106, 6082~6085, 1997.
39 Murat Barisik and Ali Beskok,“Temperature dependence of thermal resistance at the water/silicon interface”, International Journal of Thermal Sciences, Vol.77, pp.47~54, 2014.
40 Naga Rajesh Tummala, Liu Shi, and Alberto Striolo, “Molecular dynamics simulations of surfactants at the silica–water interface: Anionic vs nonionic headgroups”, Journal of Colloid and Interface Science, Vol. 362, 135~143, 2011.
41 P. A. Bonnaud1, B. Coasne, and R. J-M Pellenq, “Molecular simulation of water confined in nanoporous silica”, J. Phys.: Condens. Matter, Vol. 22(28), 284110, 2010.
42 P. Gallo, M. A. Ricci, and M. Rovere, “Layer analysis of the structure of water confined in vycor glass”, J. Chem. Phys., Vol.116, 342~346, 2002.
43 P. Gallo, M.Rapinesi, and M. Rovere, “Confined water in the low hydration regime”, J. Chem. Phys.,Vol. 177(1), 369~375, 2002.
44 P. Levitz, P. A. Bonnaud, P. A. Cazade, R. J. Pelleng, and B. Coasne, “Molecular intermittent dynamics of interfacial water: probing adsorption and bulk confinement”, Soft Matter, Vol. 9(36), 8654~8663, 2013.
45 Pablo, E.V., Jonas, S., Jordi, M., Elvira, G., and Daniel, L.,“Aqueous electrolytes confined within functionalized silica nanopores”, J. Chem. Phys., Vol. 135(10), 104503, 2011.
46 Papaportl, D.C., “ The art of molecular dynmaics simulation”, Cambridge university press, London, 1997.
47 Patrick K. Schelling, Simon R. Phillpot, and Pawel Keblinski,“ Comparison of atomic-level simulation methods for computing thermal conductivity”, Phys. Rev. B, Vol. 65, 144306, 2002.
48 Philipp A.E. Schoen et al,“Hydrogen-bond enhanced thermal energy transport at functionalized,
hydrophobic and hydrophilic silica–water interfaces”, Chem. Phys. Lett, Vol. 476, pp.271~276, 2009.
49 Philipp, A.E.S., Bruno, M., Alessandro, C., and Dimos, P., “Hydrogen-bond enhanced thermal energy transport at functionalized, hydrophobic and hydrophilic silica–water interfaces”, Chemical Physics Letters, Vol. 476, 271~276, 2009.
50 Philippe Jund and Remi Jullien,“Molecular-dynamics calculation of the thermal conductivity of vitreous silica”, PhysRevB, Vol. 59(21), pp.13707~13711, 1999.
51 Philippe Jund. and Remi Jullien, “Molecular-dynamics calculation of the thermal conductivity of vitreous silica”, Phys. Rev. B, Vol. 59, 13707~13711, 1999.
52 Plachinda Paul, Evans David and Solanki Raj,“Thermal Conductivity of Graphene Nanoribbons: Effect of the Edges and Ribbon Width”, Journal of Heat Transfer of ASME, Vol.134, pp.122401-1~122401-7, 2012.
53 Rahman, A., “Correlations in the Motion of Atoms in Liquid Argon”, Phys. Rev., Vol. 136, 405~411, 1964.
54 Richard Renou, Anthony Szymczyk, and Aziz Ghoufi, “Water confinement in nanoporous silica materials”, The Journal of Chemical Physics, Vol. 140, 044704, 2014.
55 S. Tsuneyuki, M. Tsukada, and H. Aoki, “First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics”, Phys. Rev. Lett., Vol. 61(7), 869~872, 1988.
56 Sabine Leroch and Martin Wendland, “Simulation of Forces between Humid Amorphous Silica Surfaces: A Comparison of Empirical Atomistic Force Fields”, J. Phys. Chem. C, Vol. 116(50), 26247~26261, 2012.
57 Sakoda, A. and Suzuki, M., “Simultaneous Transport of Heat and Adsorbater in Closed Type Adsorption Cooling System Utilizing Solar Heat”, J. of Solar Energy Engineering, Vol. 108, 239~245, 1986.
58 Shih-Kai Chien, Yue-Tzu Yang and Cha'o-Kuang Chen,“ Influence of chemisorption on the thermal conductivity
of graphene nanoribbons”, CARBON, Vol. 50(2), pp.421~428, 2012.
59 Shih-Kai Chien, Yue-Tzu Yang, and Cha'o-Kuang Chen,“ Influence of hydrogen functionalization on thermal conductivity of graphene:
Nonequilibrium molecular dynamics simulations”, AIP, Vol. 98, pp03307, 2011.
60 T.Y. Ng, J.J. Yeo, Z.S. Liu, “A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing”, Journal of Non-Crystalline Solids, Vol. 358, 1350~1355, 2012.
61 T.Y. Ng, J.J. Yeo, Z.S. Liu, “A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing”, Journal of Non-Crystalline Solids, Vol. 358, 1350~1355, 2012.
62 Tabor D., “Gases, Liquids and Solids
And Other States of Matter”, Cambridge University Press, Cambridge, 1991.
63 Tengfei Luo and John R. Lloyd,“Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions”, International Journal of Heat and Mass Transfer, Vol. 53, pp.1~11, 2010.
64 Thomas Coquil, Jin Fang and Laurent Pilon,“Molecular dynamics study of the thermal conductivity of amorphous
nanoporous silica”, International Journal of Heat and Mass Transfer, Vol.54 , pp.4540~4548, 2011.
65 Thomas Coquil, Jin Fang, and Laurent Pilon, “Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica”, International Journal of Heat and Mass Transfer, Vol. 54, 4540~4548, 2011.
66 Tomasz Falat, Bartosz Platek and Jan Felba,“Non-Equilibrium Molecular Dynamics Simulation of Heat Transfer in Carbon Nanotubes - Verification and Model Validation.”, Int. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2011.
67 Tuan, A.Ho. et al , “Interfacial water on crystalline silica: a comparative molecular dynamics simulation study”, Molecular Simulation, Vol. 37(3), 170~195, 2011.
68 Tudor, I.C et al, “Evaluation of Force Fields for Molecular Simulation of Polyhedral Oligomeric
Silsesquioxanes”, J. Phys. Chem. B, Vol. 110, 2502~2510, 2006.
69 Van Vlack, “Elements Of Material Science And Engineering”, Addison-Wesley, Reading, Mass., 1989.
70 Verlet, L., “Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., Vol. 159, 98~103, 1967.
71 Xiao-na Liu, and Qing-yin Zhang, “The molecules simulation of the diffusion of polar fluid in the nano
channel”, Advanced Materials Research, Vol. 823, 657~660, 2013.
72 Yongshen, L., and Peter, T.C., “Hydration structure of water confined between mica surfaces”, J. Phys. Chem., Vol. 124, 074711, 2006.
73 Young-Gui Yoon, Roberto Car and David J. Srolovitz,“Thermal conductivity of crystalline quartz from classical simulations”, Physical Review B, Vol. 70, pp.012302~012302-4, 2004.
74 Young-Gui Yoon,Roberto Car, and David J. Srolovitz, “Thermal conductivity of crystalline quartz from classical simulations”, Phys. Rev. B, Vol.70, 012302, 2004.
75 Yuhang Jing, Ming Hu and Licheng Guo,“Thermal conductivity of hybrid graphene/silicon heterostructures”, AIP, Vol. 144, pp.153518~153518-10, 2013.
76 Yuhang Jing,Ming Hu, and Licheng Guo1, “Thermal conductivity of hybrid graphene/silicon heterostructures”, Journal of Applied Physics, Vol. 114, 153518, 2013.
77 Yuki, M., Yansushi,S., and Toshiya, S., “Charge Behaviors around Oxide Device/Pseudo-Physiological Solution Interface with Molecular Dynamic Simulations”, Jpn. J. Appl. Phys., Vol. 52(12), 127001, 2013.
78 Zhengxing Huang et al,“Thermal conductivity of amorphous and crystalline thin films by molecular dynamics simulation”, Physica B, Vol. 404, pp.1790~1793, 2009.
79 Zhengxing Huang, ZhenanTang, JunYu, and SuyuanBai, “Thermal conductivity of amorphous and crystalline thin films by molecular dynamics simulation”, Physica B: Condensed Matter, Vol. 404, 1790~1793, 2009.
80 Zhonghao Rao, Shuangfeng Wang and Feifei Peng,“Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study”, Applied Energy, Vol. 100, pp.303~308, 2012.