簡易檢索 / 詳目顯示

研究生: 吳宇珞
Wu, Yu-Lo
論文名稱: 甲硝唑誘導陰道滴蟲非鐵死亡性細胞死亡及硫氧還蛋白系統抑制的治療潛力
Non-ferroptotic cell death induced by metronidazole in Trichomonas vaginalis and the therapeutic potential of thioredoxin system inhibition
指導教授: 鄭尉弘
Cheng, Wei-Hung
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 88
中文關鍵詞: 陰道滴蟲甲硝唑鐵死亡硫氧還蛋白家族絲裂黴素C
外文關鍵詞: Metronidazole, Mitomycin C, ferroptosis, iron, thioredoxin reductase
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陰道滴蟲 (Trichomonas vaginalis)為單細胞原蟲,同時也為全世界傳播最廣的非病毒性性病。在感染人群中,女性由於經期的緣故,生殖道營養含量較男性豐富所以常導致較為嚴重的炎症。陰道滴蟲病的主要治療藥物為甲硝唑(Metronidazole; MTZ),該藥物在厭氧環境下可被還原為具有功能性的藥物。而其還原態可以藉由釋放活性氧化物(ROS)來殺死病原體。在研究鐵與MTZ的交互作用中便發現,鐵可以使MTZ的毒殺能力增強,這些跡象便讓我們聯想到於鐵死亡該細胞死亡途徑,該途徑便是因為鐵藉由芬頓反應(Fenton reaction)生成ROS並攻擊細胞膜上的磷脂質,造成過氧化後破裂。而在初步改變培養液當中的鐵濃度時便發現,單純增加鐵濃度並不會影響陰道滴蟲的生長情形,但同時給予鐵以及鐵死亡誘導劑時便可以觀察到陰道滴蟲族群有進一步的下降。與此同時,我們在試圖藉由抑制劑抑制鐵死亡時卻發現其無法在陰道滴蟲上作用,顯示其可能參與的死亡途徑不同。同時,抗藥性蟲株 (MTZ-R)同樣也對於鐵死亡誘導劑等具有一定程度抗性。在解讀基因集變異分析 (gene set variation analysis; GSVA)的結果中發現,MTZ-R的蟲株 (ATCC 30238, 50142, 50143)在給予MTZ治療後穀胱甘肽代謝 (glutathione metabolism)的途徑相對MTZ-S (ATCC 30001, 30236, 50167)來的高,初步披露MTZ-R在抗氧化系統上的能力。相關抗氧化基因表現上也發現到其在鐵死亡誘導劑RSL3或是MTZ的治療下,硫氧還蛋白家族的基因表現量在抗藥性蟲株上明顯高於敏感性蟲株。鑒於種種證據,我們接著便嘗試給予硫氧還蛋白還原酶(Thioredoxin reductase, TrxR)的抑制劑來觀察抗藥性蟲株的存活程度。在利用絲裂黴素C (Mitomycin C, MMC)與MTZ共同處理後可以發現其族群死亡的數量比起單獨給予任一種藥物來的有效,而利用Loewe additivity計算兩種藥物的後證明其存在協同效果。本研究首次證明陰道滴蟲並不存在鐵死亡的特性,且與其共通的抗氧化機制可能參與在MTZ的抗性當中。並且通過這次加乘試驗我們首次發現MMC與MTZ可形成協同作用,加強對於抗藥性蟲株的毒殺能力。

    Trichomonas vaginalis (T.v) is the most common non-viral sexually transmitted disease, its infection rate is more prevalent than gonorrhea and chlamydia in the US. Metronidazole (MTZ) is the standard treatment, but resistance is becoming a serious problem. Previous researchers have discussed the interaction between iron and MTZ and pulled out the possibility of ferroptosis. Thus, in this study we urged to discover whether the mechanism of MTZ toxicity is through ferroptosis linked pathway, after treating with Fer-1 and DIP both couldn’t rescue the cell survival caused by RSL3 and MTZ, and non-obvious lipid peroxidation gave a negative answer in ferroptosis, investigating the possible cell death pathway through qPCR revealed that thioredoxin system, especially thioredoxin reductase (TrxR), might plays a shared mechanism in RSL3 and MTZ killing. Thus, the inhibition of TrxR be an imperative mission, we choose mitomycin C (MMC) as a potential TrxR inhibitor, not only its similar biochemical feature with MTZ, its combination of MTZ were reported to have ability to against C.difficile infection. After calculating the synergy score of MMC and MTZ by using SynergyFinder revealed that it does have synergistic ability to against MTZ-R strain. Gene expression level in metabolism-related genes also revealed that combined group will change the glucose metabolism pathway, as for pentose phosphate pathway (PPP), the combination group will elevate the expression of these genes. In conclusion, the research revealed that there is no ferroptosis exists in T.v, and that its common antioxidant mechanisms may be involved in metronidazole (MTZ) resistance. Furthermore, through combination experiments, we have, for the first time, discovered that mitomycin C (MMC) and MTZ can act synergistically to enhance the cytotoxicity against drug-resistant strains.

    學位考試及格證明 I 中文摘要 II Non-ferroptotic cell death induced by metronidazole in Trichomonas vaginalis and the therapeutic potential of thioredoxin system inhibition III Introduction IV Material and methods IV Results V Conclusion VII 目錄 VIII 第一章緒論 1 陰道滴蟲 (Trichomonas vaginalis) 1 甲硝唑(Metronidazole) 3 鐵與甲硝唑 5 鐵死亡 (Ferroptosis) 6 脂質過氧化 (Lipid peroxidation) 7 脂質代謝與鐵死亡 8 抗氧化系統與鐵死亡 9 陰道滴蟲抗氧化系統 10 絲裂黴素C (Mitomycin C) 12 研究動機 13 實驗設計與目標 14 第二章材料與方法 17 陰道滴蟲蟲株與培養基 17 YI-S(Yeast Iron-Horse serum)培養液配方 17 陰道滴蟲蟲體之保存 20 陰道滴蟲解凍 20 人類癌症細胞株 21 化合物配製 21 蟲體計算與觀察 22 陰道滴蟲藥物敏感度試驗 23 藥物合併效果計算 23 陰道滴蟲RNA萃取 24 RNA反轉錄cDNA試驗 24 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 25 核酸電泳分析 26 即時聚合酶連鎖反應 (Quantitative PCR, qPCR) 26 脂質過氧化試驗 27 第三章結果 30 3.1 單純供給鐵並無法造成陰道滴蟲死亡 30 3.2 鐵死亡誘導劑可造成陰道滴蟲存活率下降 30 3.3 鐵死亡抑制劑以及鐵螯合劑無法有效抑制鐵死亡誘導劑在陰道滴蟲上引發的死亡 31 3.4 經過鐵死亡誘導劑以及甲硝唑處理後,脂質過氧化程度並未顯著上升 32 3.5 硫氧還蛋白家族在陰道滴蟲甲硝唑抗藥性株中的表現量上升 32 3.6 絲裂黴素C作為硫氧還蛋白還原酶抑制劑,可降低抗藥性蟲株之存活率 33 3.7 絲裂黴素C與甲硝唑聯合處理陰道滴蟲具有協同效果 34 3.8 聯合處理可影響陰道滴蟲醣類代謝相關基因 35 第四章結論 38 第五章討論 39 研究限制 41 參考文獻 43 附圖 49 附表、qPCR的序列、進行實驗時所使用之Tm值以及序列來源 75

    [1] Argaez-Correa, W., et al. (2019). "The Role of Iron Status in the Early Progression of Metronidazole Resistance in Trichomonas vaginalis Under Microaerophilic Conditions." J Eukaryot Microbiol 66(2): 309-315.
    [2] Chen, X., et al. (2021). Ferroptosis: machinery and regulation. Autophagy 17(9): 2054-2081.
    [3] Chose, O., et al. (2003). "Programmed cell death in parasitic protozoans that lack mitochondria." Trends Parasitol 19(12): 559-564.
    [4] Conrad, M. and D. A. Pratt (2019). "The chemical basis of ferroptosis." Nat Chem Biol 15(12): 1137-1147.
    [5] Cuvelier, G., et al. (2023). "Resistance to CLnA-induced ferroptosis is acquired in Caco-2 cells upon differentiation." Frontiers in Cell Death
    [6] Dixon, S. J., et al. (2012). "Ferroptosis: an iron-dependent form of nonapoptotic cell death." Cell 149(5): 1060-1072.
    [7] Dixon, S. J. and J. A. Olzmann (2024). "The cell biology of ferroptosis." Nat Rev Mol Cell Biol 25(6): 424-442.
    [8] Jane M. Carlton, R. P. H., et al. (2007). "Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis." Science: 207-212.
    [9] Lei, G., et al. (2024). "The roles of ferroptosis in cancer: tumor suppression, Tumor microenvironment, and therapeutic interventions." Cancer Cell 42(4): 513-534.
    [10] Liang, D., et al. (2023). "Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones." Cell 186(13): 2748-2764 e2722.
    [11] Llabani, E., et al. (2019). "Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis." Nat Chem 11(6): 521-532.
    [12] Lovatt, M., et al. (2020). "Peroxiredoxin-1 regulates lipid peroxidation in corneal endothelial cells." Redox Biol 30: 101417.
    [13] Lu, B., et al. (2019). "Identification of PRDX6 as a regulator of ferroptosis." Acta Pharmacol Sin 40(10): 1334-1342.
    [14] Mercer, F. and P. J. Johnson (2018). "Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses." Trends Parasitol 34(8): 683-693.
    [15] Siddique, Y. H., et al. (2012). "Estimation of lipid peroxidation induced by hydrogen peroxide in cultured human lymphocytes." Dose Response 10(1)
    [16] Tang, D., et al. (2021). "Ferroptosis: molecular mechanisms and health implications." Cell Res 31(2): 107-125.
    [17] Van Gerwen, O. T., et al. (2021). "Epidemiology, Natural History, Diagnosis, and Treatment of Trichomonas vaginalis in Men." Clin Infect Dis 73(6): 1119-1124.
    [18] Jane Rowley et al. (2016). Chlamydia, gonorrhea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016
    [19] Gregor P. C. Drummen, Lydia C. M. Van Liebergen, Jos A. F. Op Den Kamp, And Jan A. Post C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology
    [20] Ewelina Mielczarek1 · Joanna Blaszkowska. (2015) Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure
    [21] Muchalski, H., Levonyak, A. J., Xu, L., Ingold, K. U. & Porter, N. A. (2015) Competition H(D) kinetic isotope effects in the autoxidation of hydrocarbons. J. Am. Chem. Soc. 137, 94–97.
    [22] Qing Nie, Yue Hu, Xiao Yu, Xiao Li and Xuedong Fang. (2022) Induction and application of ferroptosis in cancer therapy
    [23] Hadian, K. and B. R. Stockwell (2020). "Snapshot: Ferroptosis." Cell 181(5): 1188-1188 e1181.
    [24] Hadian, K. and B. R. Stockwell (2023). "The therapeutic potential of targeting regulated non-apoptotic cell death." Nat Rev Drug Discov 22(9): 723-742.
    [25] Hsin‑Chung Lin et al. (2020) Proteomic signatures of metronidazole resistant Trichomonas vaginalis reveal novel proteins associated with drug resistance
    [26] Siddhartha Dasa et al. (2002) Lipid metabolism in mucous-dwelling amitochondriate protozoa
    [27] GARY GARBER et al. (1998) Clinical and Microbiological Aspects of Trichomonas vaginalis
    [28] Beach DH, Holz GG Jr, Singh BN, Lindmark DG. (1990) Fatty acid and sterol metabolism of cultured Trichomonas vaginalis and Tritrichomonas foetus.
    [29] Beach DH, et al. (1991) Phospholipid metabolism of cultured Trichomonas vaginalis and Tritrichomonas foetus.
    [30] Tachezy J, Makki A, Hrdý I. (2022) The hydrogenosome of Trichomonas vaginalis. J Eukaryot Microbiol.
    [31] Costello CE et al. (1993) Structural characterization of novel inositol phosphosphingolipids of Tritrichomonas foetus and Trichomonas vaginalis. Glycobiology.
    [32] Brent R. Stockwell (2022) Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185(14):2401-2421.
    [33] Doll S, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017 Jan;13(1):91-98.
    [34] Ellis JE et al. Antioxidant defenses in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology 1994 Sep;140 (Pt 9):2489-94.
    [35] Qi W, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep. 2019 Nov 7;9(1):16185
    [36] López-Grueso MJ et al. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biol. 2020 Oct.
    [37] Yin, H., Xu, L., & Porter, N. A. (2011). Free radical lipid peroxidation: mechanisms and analysis. Chemical Reviews, 111(10), 5944-5972.
    [38] Steven A. Sullivan, et al. Comparative genomics of the sexually transmitted parasite Trichomonas vaginalis reveals relaxed and convergent evolution and genes involved in spillover from birds to humans. BioRxiv 2024 Dec.
    [39] Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 2022 Jul 5
    [40] Ma J, Motsinger-Reif A. Current Methods for Quantifying Drug Synergism. Proteom Bioinform. 2019 Jul;1(2)
    [41] Combination of mitomycin C and low-dose metronidazole synergistically against Clostridioides difficile infection and recurrence prevention bioRxiv 2024. Jun-Jia Gong, I-Hsiu Huang, Yuan-Pin Hung, Yi-Wei Chen, Yun-Chien Lin, Jenn-Wei Chen
    [42] Christian Heiss et al. Novel structural features of the immunocompetent ceramide phospho-inositol glycan core from Trichomonas vaginalis, Carbohydrate Research, Volume 419, 2016
    [43] David Leitsch. A review on metronidazole: an old warhorse in antimicrobial chemotherapy, parasitology, Volume 146, 2019
    [44] Cosar C and Julou L (1959) The activity of 1-(2-hydroxyethyl)-2-methyl-5- nitroimidazole (R. P. 8823) against experimental Trichomonas vaginalis infections. Annales d l’Inststitut Pasteur 96
    [45] David Leitsch ,Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Molecular microbiology
    [46] Manuel M. Paz, Chris A. Pritsos, Chapter Seven - The Molecular Toxicology of Mitomycin C, Editor(s): James C. Fishbein, Advances in Molecular Toxicology, Elsevier, Volume 6, 2012.
    [47] Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014 Jan;66:75-87. Epub 2013 Jul 27.
    [48] Müller S, Liebau E, Walter RD, Krauth-Siegel RL. Thiol-based redox metabolism of protozoan parasites. Trends Parasitol. 2003 Jul.
    [49] Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 1999 Mar 30.
    [50] Lehker, M. W., & Alderete, J. F. (1992). Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Molecular Microbiology.
    [51] Garcia, A. F., Chang, T. H., Benchimol, M., Klumpp, D. J., Lehker, M. W., & Alderete, J. F. (2003). Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Molecular Microbiology, 47(5), 1207-1224.
    [52] Alderete, J. F., Nguyen, J., Mundodi, V., & Lehker, M. W. (2004). Heme-iron increases levels of AP65-mediated adherence by Trichomonas vaginalis. Microbial Pathogenesis, 36(5).
    [53] Sutak, R., Lesuisse, E., Tachezy, J., & Richardson, D. R. (2008). Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends in Microbiology, 16(6), 261-268.
    [54]Beltrán NC, Horváthová L, Jedelský PL, Sedinová M, Rada P, Marcinčiková M, Hrdý I, Tachezy J. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One. May 31, 2013
    [55]Elwakil HS, Tawfik RA, Alam-Eldin YH, Nassar DA. The effect of iron on metronidazole activity against Trichomonas vaginalis in vitro. Exp Parasitol. 2017 Nov.
    [56] Zwierzina H, Hoffmann S, Schmalzl F, Braunsteiner H. Die hämatopoetischen Wachstumsfaktoren [Hematopoietic growth factors]. Wien Med Wochenschr. 1991
    [57] GUSCHINA, I.A., HARRIS, K.M., MASKREY, B., GOLDBERG, B., LLOYD, D. and HARWOOD, J.L. (2009), The Microaerophilic Flagellate, Trichomonas vaginalis, Contains Unusual Acyl Lipids but no Detectable Cardiolipin. Journal of Eukaryotic Microbiology.

    下載圖示 校內:2025-11-30公開
    校外:2025-11-30公開
    QR CODE