簡易檢索 / 詳目顯示

研究生: 劉長陞
Liou, Chang-Sheng
論文名稱: 線性動態數據之雜訊降減
Noise reduction on dynamic system response
指導教授: 陳正宗
Chan, Jenq-Tzong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 49
中文關鍵詞: 線性動態數據法雜訊濾除器雜訊降減
外文關鍵詞: linear dynamic system response data, noise filter, noise reduction
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了一個以有理式為模型發展的過濾數據數值方法,用來降低在離散連續動態輸出裡的雜訊訊號。但是對於系統,只要加入濾除器就可能會產生不良的影響。本研究提出的雜訊濾除器是能有效的降低殘餘雜訊(Residual Noise)的大小並且可以忽略經由濾波後所產生的誘發誤差(Induced Error),藉由平滑數據序列來達到降低數據的雜訊。因此本論文先用電腦模擬一組實驗數據,利用所設計之濾除器去濾除雜訊,探討哪種參數調整的濾除器對於系統會有較佳之性能以及能將雜訊降減到多少,最後在幫助使用者歸納參數公式。

    This paper proposes a numerical technique to design data filter. The proposed filter is developed for the reduction of additive and data noise contained in the discrete output of implicit continuous dynamics that is modeled by a ration function. However, adding controller will emerge bad effect for any system. So, the merits of this technique include an orders of magnitude reduction in the residual noise level and a negligible induced error on the filtered signal. Reduction in data noise is achieved by smoothing the data sequence. First, we simulate a set of data by computer and filtrate data noise by proposed filter. We investigate which parameter has best performance and which level of noise can be reduced. At last ,we offer envelope function for user.

    目錄 中文摘要 I Abstract II 誌謝 XVI 目錄 XVII 表目錄 XX 圖目錄 XXI 符號說明 XXIII 第一章 緒論 1 1.1 簡介與研究動機 1 本文大綱 3 第二章 雜訊濾除器濾除原理 4 2.1 原始數據 4 2.2 雜訊濾除器之基本構想 5 2.3 之基本運算公式 7 2.4 IER之分析 9 2.5 濾除器公式更改 11 2.6 RNR之分析 12 第三章 高精度平台之發展與濾除器精度設定 15 3.1 前言 15 3.2 二進位系統簡介 15 3.3 IEEE754二進位浮點數算術標準 17 3.4 浮點數表示法範圍 19 3.5 高精度平台之架構 20 3.5.1 高精度平台之能力 21 3.5.2 截斷誤差(Truncation Error)的改善 21 3.6 濾除器運算精度之決定 22 第四章 數值模擬 24 4.1 前言 24 4.2 方法及步驟 24 4.3 數值模擬 25 4.4 IER分析 26 4.4.1 MATLAB所能運算之階數提升模擬 26 4.4.2 在高精度平台下濾除器階數提升之模擬 28 4.5 RNR分析 31 4.6 濾除器誘發誤差率與殘餘雜訊率計算 34 4.7 模擬結果與討論 36 4.7.1 濾除器階數對誘導誤差的影響 37 4.7.2 數據取樣數對殘餘雜訊的影響 39 4.8 公式驗證 43 第五章 結論 46 參考文獻 48

    [1] J .T.H. Chan (1996) it Optimal output feedback regulator - A numerical synthesis approach for input-output data, ASME/JDSMC V01.118, 1996.
    [2] J.T.H. Chan, An LQ controller with a prescribed pole region, A data-based design approach, ASME/JDSMC, vol.119, No.2, pp.271-277, 1997..
    [3] Lennart Ljung and Torsten Sodertrom. Theory and practice of recursive identification. The MIT Press, Cambridge, Ma., 1983.
    [4] Savitzky, A., and M.J.E. Golay (1964), Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry, 36, 1627-1639.
    [5] Steinier, Jean; Termonia, Yves; Deltour, Jules (1972). Smoothing and difierentiation of data by simplified least square procedure. Analytical Chemistry 44 (11): 1906V9.
    [6] Marchand, P., and L. Marmet (1982), Binomial smoothing filter: A way to avoid some pitfalls of least square polynomial smoothing? Rev. Sci. Instrum., 54, 1034-41.
    [7] O’Haver, T., (2008) Intro_to Signal ProcessingSmoothing, http://terpconnect.umd.edu/ toh / spectrum / Smoothinghtml.html
    [8] E.. Jacobsen and R. Lyons (2003), The Sliding DFT, Signal Processing Magazine vol.20, issue 2, pp. 74V80.
    [9] E. Jont B. Allen (1977). Short Time Spectral Analysis, Synthesis, and Modification by Discrete Fourier Transform. IEEE Transactions on Acoustics, Speech, and Signal Processing. ASSP-25 (3): 235V238, June.
    [10] J. Chen, P. Jonsson, M. Tamura, Z. Cu, B. Matsushita, and L. Eklundh (2004). A simple method for reconstructing a high-quality ndui time-series data set based on the sauitzky-golay filter. Remote Sensing of Environment, 91(3-4):332 V 344.
    [11] Raymond G. Jacquot, Modern digital control systems, Marcel Dekker,Inc., New York, N.Y.. pp.37-40, (1981).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE