簡易檢索 / 詳目顯示

研究生: 童宇陞
Tung, Yu-Sheng
論文名稱: 似生命互動物件的設計與體驗研究:以NUWA為研究案例
Design and Experience Research of Lifelike Interactive Artifact: NUWA as a Case Study
指導教授: 簡瑋麒
Chien, Wei-Chi
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 140
中文關鍵詞: 似生命設計機器人學體驗設計人機互動人機器人互動
外文關鍵詞: Lifelike Design, Robotics, Experience Design, Human-Computer Interaction, Human-Robot Interaction
相關次數: 點閱:53下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 似生命設計(Lifelike Design)是一種引用泛生命元素的互動物件設計方法。在現代消費主義充斥的情況下,產品與人之間的互動變得功利、關係變得脆弱。似生命設計方法被期待能對這個現象做出回應,豐富使用體驗,並強化物件與使用者間的情感聯繫。透過簡單回顧人類裡史上對於生命的揣測、分析、模仿,我們以更廣泛的知識基礎理解了似生命的概念。文獻回顧方面,我們整理了許多似生命設計案例,其中包含機器人、電子動物、以及非動物形態的設計案例。這些設計案例展現了許多似生命設計的各種方向與潛能。透過文獻回顧,我們在設計似生命設計的指導原則上獲得基礎概念,並在似生命設計物品的互動、體驗、與研究體系中看到研究空間。
    我們首先進行了 NUWA23 研究。該研究的研究物件是一盞桌燈。這盞桌燈成功地依靠研究的回顧成果進行抽象的似生命設計,顯示似生命設計在實際場域的應 用潛力。NUWA23 的使用者問卷與訪談研究,透過與一般檯燈的比較也觀察到了似生命設計的體驗特質。例如擅吸引注意力、與功能性有矛盾、使用者會進行複雜解釋、使用者有感受到夥伴關係。NUWA23 也透過了數種問卷與訪談的研究方法,形成了一套研究似生命設計的系統性方法。接著,我們又進行了 NUWA24 研究。該研究的研究物件是 NUWA23 檯燈的造型與情境調整版。設計調整成功減少了功能性衝突。在長達三週的時間進行使用者體驗研究,並以時間作為主要變量進行觀察。 NUWA24 的研究有三個主要發現:似生命認知是一種理解產品的比喻方式、使用者與似生命物件互動時可以分為新奇探索階段與日常互動階段、使用者與似生命設計物的關係會隨時間發展變化。
    研究的最後,我們以似生命設計作為研究視野,提出該種類互動性物件的普遍設計指導原則、使用者互動特性、以及使用者體驗關鍵時刻。

    Lifelike Design is a method of interactive artifact design that applies lifelike elements. The approach is expected to enrich the experience and strengthen the emotional bond between the artifact and the user. By briefly reviewing the history of humans guessing, analyzing, and imitating life, we understand the concept of lifelike with a broader knowledge base at the beginning of the research. We reviewed a number of examples of lifelike designs, including human-like, animal-like, and non-animacy design cases. These cases demonstrate the various directions and potentials of lifelike design. Through the literature review, we gained foundational concepts on the guidelines for designing lifelike artifacts, and saw space for research in the interaction, experience, and research system of lifelike artifacts.
    We conducted the NUWA23 study. The research artifact for this study was a desk lamp. This desk lamp succeeded in creating a characteristic lifelike design relying only on the review results of the study. The NUWA23 user Questionnaire and interview study also observed the experience qualities of lifelike design by comparing it to a common desk lamp. For example, it tends to attract attention, contradicts functionality, users will make complicated explanations, and users feel a sense of partnership. NUWA23 has also developed a systematic methodology for studying lifelike design through several Questionnaire and interview research tools. Next, the NUWA24 study was conducted. The research artifact for this study was a modified version of the style and scenario of the NUWA23 table lamp. The design adjustments succeeded in reducing functional conflicts. The user experience study was conducted over a three-week period, with time as the main variable of observation. Three main findings emerged from the NUWA24 study: lifelike perceptions are metaphors for understanding products, user interactions with lifelike objects can be categorized into a novelty exploration phase and a daily interaction phase, and the relationship between users and lifelike design artifacts can develop and change over time.
    Finally, we summarize the design guidelines, user interaction characteristics, and key user experience moments of lifelike interactive artifacts.

    摘要 ii SUMMARY iii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1 BACKGROUND 1 1.1 Motivations for Lifelike Design 1 1.2 From Myths to Robots: Exploration of “Life”5 1.3 Research Scopes, Themes and Organization 9 1.3.1 Research Organization 10 1.3.2 NUWA23: Basic Properties of Lifelike Artifact 12 1.3.3 NUWA24: Long-term Experience of Lifelike Artifact 13 CHAPTER 2 LIFELIKE DESIGN 15 2.1 Lifelike Interactive Artifacts 15 2.1.1 Humanoid Interactive Artifact 16 2.1.2 Animal-like Interactive Artifact 19 2.1.3 Characteristic Lifelike Design Interactive Artifact 20 2.2 Fundamentals and Potential of Lifelike Experience 21 2.3 Lifelike Design Research 23 CHAPTER 3 NUWA23: EXPLORE THE DESIGN AND RESEARCH FRAMEWORK 27 3.1 Design 27 3.1.1 Guidelines for Design Lifelikeness 27 3.1.2 Object Selection 29 3.1.3 Design and Making Process 30 3.2 Experiment 38 3.2.1 Expect Results 38 3.2.2 Quantitative Questionnaire 39 3.2.3 Interview 41 3.3 Results 41 3.3.1 Quantitative Result 41 3.3.2 Interview Analysis 49 3.4 Insights 51 CHAPTER 4 NUWA24: EXPLORE THE DEVELOPING EXPERIENCE 54 4.1 Design 54 4.2 Experiment 60 4.3 Results 63 4.3.1 Quantitative Results of the First Participant 64 4.3.2 Qualitative Results of the First Participant 74 4.3.3 Quantitative Results of the Second Participant 80 4.3.4 Qualitative Results of the Second Participant 89 4.4 Insights 93 4.4.1 Perceive with both Product and Living-Thing Aspects 93 4.4.2 Two Stages: First Impression and Daily Life 95 4.4.3 Development of Experience and Relationship 96 CHAPTER 5 DISCUSSION 98 5.1 Design Strategies of Lifelike Artifact 98 5.2 Insights from Experiencing Lifelike Artifact 100 5.2.1 Binary Understanding 100 5.2.2 Paradoxes between Pragmatic and Hedonic Qualities 101 5.2.3 Attention Drawing Artifact 102 5.2.4 Changing Experience over Time 102 5.2.5 Establishing Social Bond 103 5.3 Reflection 104 REFERENCES 108

    Atlas - Boston Dynamics. (2024, April). Retrieved May 23, 2024, from Boston Dynamics website: https://bostondynamics.com/atlas/
    Avtgis, T. A., West, D. V., & Anderson, T. L. (1998). Relationship stages: An inductive analysis identifying cognitive, affective, and behavioral dimensions of Knapp’s relational stages model. International Journal of Phytoremediation, 15(3), 280–287.
    Ayanoğlu, H., Duarte, E., Sequeira, J. S., Ferreira, M. I. A., Barata, A. N., Pereira, M. F., ... Feijó, B. (2019). Emotional design and human-robot interaction : Theory, method and application (H. Ayanoğlu & E. Duarte, Eds.). Springer.
    Barker, S. B., & Wolen, A. R. (2008). The benefits of human-companion animal interaction: A review. Journal of Veterinary Medical Education, 35(4), 487–495.
    Bartneck, C., Belpaeme, T., Eyssel, F., Takayuki, K., Merel, K., & Selma, ˇSabanovi ́. (2020). Human-Robot Interaction: An introduction. Cambridge: Cambridge University Press.
    Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, 1(1), 71–81.
    Baudrillard, J. (2005). The system of objects (Vol. 3). Verso.
    Berg, J., & Lu, S. (2020). Review of interfaces for industrial human-robot interaction. Current Robotics Reports, 1, 27–34.
    Berger, C. R., Weber, M. D., Munley, M. E., & Dixon, J. T. (1977). Interpersonalrelationship levels and interpersonal attraction. Annals of the International Communication Association, 245–261.
    Bergman, T. J. (2010). Social relationships and social knowledge. In Encyclopedia of Behavioral Neuroscience (pp. 288–294).
    Billings, D. R., Schaefer, K. E., Chen, J. Y. C., & Hancock, P. A. (2012). Human-robot interaction: Developing trust in robots. HRI’12 - Proceedings of the 7th Annual ACM/IEEE International Conference on Human-Robot Interaction, 109–110.
    Bonvoisin, J., Halstenberg, F., Buchert, T., & Stark, R. (2016). A systematic literature review on modular product design. Journal of Engineering Design, 27(7), 488–514.
    Borgmann, A. (1984). Technology and the character of contemporary life: A philosophical inquiry. University of Chicago Press.
    Burneleit, E., Hemmert, F., & Wettach, R. (2009). Living interfaces: The impatient toaster. In N. Villar, S. Izadi, M. Fraser, & S. Benford (Eds.), Third International Conference on Tangible and Embedded Interaction, TEI’09 (pp. 21–22).
    Cakiroglu, I., & Pazarbasi, C. K. (2019). Critical design in daily life: Lifelike products. The Design Journal, 22, 1227–1234.
    Cameron, D., Fernando, S., Collins, E., Millings, A., Moore, R., Sharkey, A., ... Prescott, T. (2015). Presence of life-like robot expressions influences children’s enjoyment of human-robot interactions in the field. Proceedings of 4th International Symposium on New Frontiers in HRI, AISB Convention 2015.
    Chapman, J. (2005). Emotionally durable design: Objects, experiences and empathy. London: Earthscan.
    Chien, W.-C., Hassenzahl, M., & Welge, J. (2016). Sharing a robotic pet as a maintenance strategy for romantic couples in long-distance relationships.: An autobiographical design exploration. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 1375–1382. New York, NY, USA: ACM Press.
    Coffman, J. K., Guerin, D. W., & Gottfried, A. W. (2006). Reliability and validity of the Parent-Child Relationship Inventory (PCRI): Evidence from a longitudinal cross- informant investigation. Psychological Assessment, 18(2), 209–214. https://doi.org/10.1037/1040-3590.18.2.209
    Corcilius, K., & Gregoric, P. (2010). Separability vs. difference: Parts and capacities of the soul in Aristotle. Oxford Studies in Ancient Philosophy, 39, 80–119.
    Darling, K. (2017). “Who’s Johnny?” Anthropomorphic framing in human-robot interaction, integration, and policy. In P. Lin, K. Abney, & R. Jenkins (Eds.), Robot Ethics 2.0: From Autonomous Cars to Artificial Intelligence (Online, pp. 173–188). New York: Oxford Academic.
    de Graaf, M. M. A., & Allouch, S. Ben. (2017). The influence of prior expectations of a robot’s lifelikeness on users’ intentions to treat a zoomorphic robot as a companion. International Journal of Social Robotics, 9(1), 17–32.
    Detlefsen, K. (2016). Descartes on the theory of life and methodology in the life sciences. In C. T. Wolfe, P. Huneman, & T. A. C. Reydon (Eds.), Early Modern Medicine and Natural Philosophy (Vol. 14). Springer.
    Deuff, D., Milleville-Pennel, I., Ocnarescu, I., Garcin, D., Aznar, C., Capy, S., ... Venture, G. (2022). Together alone, Yōkobo, a sensible presence robject for the home of newly retired couples. In F. F. Mueller, S. Greuter, R. A. Khot, P. Sweetser, & M. Obrist (Eds.), DIS 2022 - Proceedings of the 2022 ACM Designing Interactive Systems Conference (pp. 1773–1787). New York: ACM Press.
    Diefenbach, S., Lenz, E., & Hassenzahl, M. (2013). An interaction vocabulary. describing the how of interaction. CHI ’13 Extended Abstracts on Human Factors in Computing Systems, 607–612. New York, NY, USA: ACM Press.
    Dobzhansky, T. (1968). On some fundamental concepts of Darwinian biology. In Evolutionary biology (pp. 1–34). Springer.
    Doniger, W., & O’Flaherty, W. D. (1980). Karma and rebirth in classical Indian traditions. University of California Press.
    Dougherty, C. (2006). Prometheus. Routledge.
    Duffy, B. R., & Joue, G. (2005). The paradox of social robotics: A discussion. AAAI Fall 2005 Symposium on Machine Ethics. Hyatt Regency.
    Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: A three-factor theory of anthropomorphism. Psychological Review, 114(4), 864–886.
    Fletcher, G. J. O., Simpson, J. A., & Thomas, G. (2000). Ideals, perceptions, and evaluations in early relationship development. Journal of Personality and Social Psychology, 79(6), 933–940.
    Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The Global E-waste Monitor 2020. Retrieved from http://ewastemonitor.info/
    Fox, J., & Gambino, A. (2021). Relationship development with humanoid social robots: Applying interpersonal theories to human–robot interaction. Cyberpsychology, Behavior, and Social Networking, 24(5), 294–299.
    Fujita, M. (2001). AIBO: Toward the era of digital creatures. International Journal of Robotics Research, 20(10), 781–794.
    Ganotice, F. A., Downing, K., Mak, T., Chan, B., & Yip, L. W. (2015). Translation and Validation of the Chinese Version of Parent–Child Relationship Inventory (PCRI-C)in Hong Kong. Child Indicators Research, 8(3), 657–670.
    Gaver, W. (2012). What should we expect from research through design? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 937–946. New York: ACM Press.
    Gaver, W., Schmidt, A., Bowers, J., Steed, A., Boucher, A., Villars, N., ... Pennington, S. (2004). The Drift Table: Designing for ludic engagement. CHI ’04 Extended Abstracts on Human Factors in Computing Systems, 885–900. New York: ACM Press.
    Graham, J. M. (2011). Measuring love in romantic relationships: A meta-analysis. Journal of Social and Personal Relationships, 28(6), 748–771.
    Guerber, H. A. (1995). Myths of Northern Lands. Biblo & Tannen Publishers. Haines-Gadd, M., Chapman, J., Lloyd, P., Mason, J., & Aliakseyeu, D. (2018). Emotional durability design Nine-A tool for product longevity. Sustainability (Switzerland), 10(6), 1–19.
    Hall, T. E., Birdwhistell, R., Hymes, D., Kimball, S. T., Lynch, F., & Vayda, A. P. (1968). Proxemics. Current Anthropology 9, 2(3), 83–108.
    Haring, K., Matsumoto, Y., & Watanabe, K. (2013). How do people perceive and trust a lifelike robot? Proceedings of the World Congress on Engineering and Computer Science, 1, 425–430.
    Hart, E. (2005). Breakaway: An ambient display designed to change human behavior. CHI’ 05, Human Factors in Computing Systems, 1945–1948. New York: ACM Press. Hartman, L. (1957). Wohler and the Vital Force. Journal of Chemical Education, 34(3), 141–142.
    Hassenzahl, M. (2010). Experience Design: Technology for All the Right Reasons (Vol. 3). Hassenzahl, M., Burmester, M., & Koller, F. (2003). AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In Mensch & computer 2003 (pp. 187–196). Springer.
    Hassenzahl, M., & Tractinsky, N. (2006). User experience-a research agenda. Behaviour & Information Technology, 25(2), 91–97.
    Henschel, A., Laban, G., & Cross, E. S. (2021). What makes a robot Social? A review of social robots from science fiction to a home or hospital near you. Current Robotics Reports, 2(1), 9–19.
    Hewitt, D. (2023, March). Tesla Optimus Gen 2: A Giant Leap in Robotics Technology. Retrieved May 23, 2024, from The Next Archives website: https://thenextarchives.com/ideas/tesla-optimus-gen-2-a-giant-leap-in-robotics- technology/
    Hung, L., Liu, C., Woldum, E., Au-Yeung, A., Berndt, A., Wallsworth, C., ... Chaudhury, H. (2019). The benefits of and barriers to using a social robot PARO in care settings: A scoping review. BMC Geriatrics, 19(1), 1–10.
    Iizawa, D., & Yamanaka, S. (2022). Face on a globe: A spherical robot that appears lifelike through smooth deformations and autonomous movement. 17th ACM/IEEE International Conference on Human-Robot Interaction, 502–510.
    Ito, K. (2023, May). Man finds bliss after “marrying” virtual idol Hatsune Miku. The Asahi Shimbun. Retrieved from https://www.asahi.com/ajw/articles/14893578
    Jost, C., Le Pévédic, B., Belpaeme, T., Bethel, C., Chrysostomou, D., Crook, N., ... Mirnig, N. (2020). Human-Robot Interaction: Evaluation Methods and Their Standardization. Springer.
    Jun, J. W. (2017). Plant-like robots. In E. Bohemia, I. Digranes, & R. Vande Zande (Eds.), Third Biennial Research Through Design Conference, RTD’17 (Vol. 24, pp. 501– 517).
    Kim, K., Park, J., & Li, T. (2021). Post-plant: A series of non-humanoid robots with embedded physical non-verbal interaction: The development of non-verbal Human- Robot Interaction framework and input/output integrated motor interface. Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, 4–6. New York: ACM Press.
    Kim, Y.-K., Row, Y.-K., & Nam, T.-J. (2012). Knoby: Pet-like interactive door knob. CHI ’12 Extended Abstracts on Human Factors in Computing Systems, 1685–1690. ACM Press.
    King, E., & Todd, W. D. (2023). Miracles and Machines: A Sixteenth-century Automaton and Its Legend. Getty Publications.
    Kolimenakis, A., Solomou, A. D., Proutsos, N., Avramidou, E. V, Korakaki, E., Karetsos, G., ... Tsagkari, K. (2021). The Socioeconomic Welfare of Urban Green Areas and Parks; A Literature Review of Available Evidence. Sustainability, 13(14).
    Krishnananda, S. (1970). A Short History of Religious and Philosophic Thought in India. UP, Divine Life Society.
    Lawton, L. (2017). Taken by the Tamagotchi: How a toy changed the perspective on mobile technology. The IJournal: Student Journal of the University of Toronto’s Faculty of Information, 2(2), 1–8.
    Lennox, J. C. (2021). Seven days that divide the world: The beginning according to Genesis and science. Zondervan.
    Liu, Z., Chen, X., Cui, H., Ma, Y., Gao, N., Li, X., ... Liu, Q. (2023). Green space exposure on depression and anxiety outcomes: A meta-analysis. Environmental Research, 231, 116303.
    Luttermoser, D. G. (2016). Physics 2028: Great ideas in science: The exobiology module. In D. G. Luttermoser (Ed.), Class notes designed for use of the instructor and students of the course Physics 2028: Great Ideas in Science (1st ed.). East Tennessee State University.
    Mangun, D., & Thurston, D. L. (2002). Incorporating component reuse, remanufacture, and recycle into product portfolio design. IEEE Transactions on Engineering Management, 49(4), 479–490.
    Matsumoto, N., Fujii, H., Goan, M., & Okada, M. (2005). Minimal design strategy for embodied communication agents. ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005, 335–340. IEEE.
    Mautner, M. N. (2009). Life-centered ethics, and the human future in space. Bioethics, 23(8), 433–440.
    McKay, C. P. (2004). What is life - And how do we search for it in other worlds? PLoS Biology, 2(9), 1260–1263.
    Mejia, C., & Kajikawa, Y. (2017). Bibliometric analysis of social robotics research: identifying research trends and knowledgebase. Applied Sciences, 7(12), 1316.
    Metta, G., Sandini, G., Vernon, D., Natale, L., & Nori, F. (2008). The iCub humanoid robot: An open platform for research in embodied cognition. Performance Metrics for Intelligent Systems Workshop, PerMIS’08, 9, 50–56.
    Miller, S. L. (1953). Production of amino acids under possible primitive earth conditions. Science, Vol. 117, pp. 528–529.
    Moors, A., Ellsworth, P. C., Scherer, K. R., & Frijda, N. H. (2013). Appraisal theories of emotion: State of the art and future development. Emotion Review, 5(2), 119–124.
    Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley. IEEE Robotics and Automation Magazine, 19(2), 98–100.
    Mullen, L. (2013). Defining life: Q&A with scientist Gerald Joyce. Astrobiology Magazine, 1.
    Nayback-Beebe, A. M., & Yoder, L. H. (2011). Psychometric properties of the interpersonal relationship inventory-short form for active duty female service members. Research in Nursing and Health, 34(3), 241–252.
    Norman, D. A. (1990). The Design of Everyday Thing. New York: Basic Books. Norman, D. A. (2004). Emotional Design: Why We Love (or Hate) Everyday Things.
    Ofek, E., & Avery, J. (2011). Nanda home : Preparing for life after Clocky. Harvard Business School, Case 9-511-134. Boston.
    Oxford English Dictionary. (2024). life, n. Oxford University Press. Retrieved from
    https://doi.org/10.1093/OED/1176943497
    Pandey, A. K., & Gelin, R. (2018). A Mass-Produced Sociable Humanoid Robot: Pepper: The First Machine of Its Kind. IEEE Robotics & Automation Magazine, 25(3), 40–48.
    Pedersen, C. A. (2004). Biological aspects of social bonding and the roots of human violence. Annals of the New York Academy of Sciences, 1036, 106–127.
    Pieter, D., & Paul, H. (2007). Framework of product experience. International Journal of Design, 1, 57–66.
    Plutchik, R. (2001). The nature of emotions human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. American Scientist, 89(4), 344–350.
    Riskin, J. (2003). The defecating duck, or, the ambiguous origins of artificial life. Critical Inquiry, 29(4), 599–633.
    Rothemund, P., Kellaris, N., Mitchell, S. K., Acome, E., & Keplinger, C. (2021). HASEL artificial muscles for a new generation of lifelike robots-recent progress and future opportunities. Advanced Materials, 33(19), 2003375.
    Row, Y.-K., & Nam, T.-J. (2014). CAMY: Applying a pet dog analogy to everyday ubicomp products. In A. Brush, A. Friday, J. Kientz, J. Scott, & J. Song (Eds.), 2014
    ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp’14 (pp. 63–74).
    Row, Y.-K., & Nam, T.-J. (2016). Understanding Lifelike Characteristics in Interactive Product Design. Archives of Design Research, 29(3), 25–42.
    Roy, M., Hemmert, F., & Wettach, R. (2009). Living interfaces: The intimate door lock. TEI’09 Proceedings of the Third International Conference on Tangible and Embedded Interaction, 45–46. ACM Press.
    Sarrica, M., Brondi, S., & Fortunati, L. (2020). How many facets does a “social robot” have? A review of scientific and popular definitions online. Information Technology & People, 33(1), 1–21.
    Schifferstein, H. N. J., & Zwartkruis-Pelgrim, E. P. H. (2008). Consumer-product attachment: Measurement and design implications. International Journal of Design, 2(3), 1–13.
    Serpell, J. A. (1996). Evidence for an association between pet behavior and owner attachment levels. Applied Animal Behaviour Science, 47(1–2), 49–60.
    Shanavas, T. O. (n.d.). The Quran and the Creation/Evolution of Human.
    Shih, Y. S., Samani, H., & Yang, C. Y. (2016). Internet of things for human - Pet interaction. 2016 IEEE International Conference on System Science and Engineering, ICSSE 2016, 1, 7–10.
    Söderlund, J. (2019). The Emergence of Biophilic Design. Springer.
    Sorabji, R. (1993). Body and soul in Aristotle. In M. Durrant & Aristotle (Eds.), Aristotle’s de Anima in Focus (pp. 63–89).
    Stephen R. Kellert, Wilson, E. O., Benyus, J., Mador, M. L., Salingaros, N. A., Kenneth G. Masden, ... Hartley, A. (2008). Biophilic Design (S. R. Kellert, J. H. Heerwagen, & M. L. Mador, Eds.). New York: John Wiley & Sons, Inc.
    Studtmann, P. (2007). Aristotle’s categories. In E. N. Zalta & U. Nodelman (Eds.), Stanford Encyclopedia of Philosophy: Vol. Spring 2024 Edition.
    Tamagotchi: The Next Generation of the Interactive Virtual Pet. (n.d.). Retrieved May 22, 2024, from https://tamagotchi.com/
    Tan, H. (2018). Lifelike Design in Robotic and Interactive Objects. Indiana University, Indiana.
    Tan, H., & Sabanovic, S. (2017). Designing lifelikeness in interactive and robotic objects. HRI’17, ACM/IEEE International Conference on Human-Robot Interaction, 381–382. IEEE.
    Terada, Y., & Yamamoto, I. (2004). An animatronic system including lifelike robotic fish. Proceedings of the IEEE, 92(11), 1814–1820.
    Tian, Z., Ye, S., & Qian, H. (2020). Myths of the Creation of Chinese. Springer.
    Togler, J., Hemmert, F., & Wettach, R. (2009). Living interfaces: The thrifty faucet. In N.
    Villar, S. Izadi, M. Fraser, & S. Benford (Eds.), Third International Conference on Tangible and Embedded Interaction, TEI’09 (pp. 43–44).
    Tung, Y.-S., & Chien, W.-C. (2023). NUWA: Lifelike as a design strategy to enhance product’s hedonic qualities. In M. Kurosu & A. Hashizume (Eds.), HCII’23, Human- Computer Interaction International (pp. 290–301). Springer.
    Tuomi, A., Tussyadiah, I. P., & Hanna, P. (2021). Spicing up hospitality service encounters: the case of PepperTM. International Journal of Contemporary Hospitality Management, 33(11), 3906–3925.
    Ulrich, R. S. (2002). Health benefits of gardens in hospitals. Paper for Conference, Plants for People International Exhibition Floriade, 17(5).
    Van der Putte, D., Boumans, R., Neerincx, M., Rikkert, M. O., & De Mul, M. (2019). A Social Robot for Autonomous Health Data Acquisition among Hospitalized Patients: An Exploratory Field Study. 14th ACM/IEEE International Conference on Human- Robot Interaction (HRI), 658–659. IEEE.
    Wagner, C. (2009). ‘The Japanese way of robotics’: Interacting ‘naturally’ with robots as a national character? ROMAN’09, 18th IEEE International Symposium on Robot and Human Interactive Communication, 510–515. IEEE.
    Waiblinger, S., Boivin, X., Pedersen, V., Tosi, M. V., Janczak, A. M., Visser, E. K., & Jones, R. B. (2006). Assessing the human-animal relationship in farmed species: A critical review. Applied Animal Behaviour Science, 101(3–4), 185–242.
    Weiss, A., Wurhofer, D., & Tscheligi, M. (2009). “I love this dog”-children’s emotional attachment to the robotic dog AIBO. International Journal of Social Robotics, 1(3), 243–248.
    What we learned from ASIMO - Honda Robotics - Honda Global. (2023). Retrieved May 23, 2024, from Honda Motor website: https://global.honda/en/robotics/asimo/
    Wight, J. K. (2020). The battle for the robot soul. Philosophy Now, (139), 1–8. Yamaji, Y., Miyake, T., Yoshiike, Y., de Silva, P. R. S., & Okada, M. (2011). STB: Child-dependent sociable trash box. International Journal of Social Robotics, 3(4), 359–370.
    Yamaoka, F., Kanda, T., Ishiguro, H., & Hagita, N. (2005). “Lifelike” behavior of communication robots based on developmental psychology findings. 5th IEEE-RAS International Conference on Humanoid Robots, 2005., 406–411.
    Yamaoka, F., Kanda, T., Ishiguro, H., & Hagita, N. (2007). How contingent should a lifelike robot be? The relationship between contingency and complexity. Connection Science, 19(2), 143–162.
    Yarcheski, A., Mahon, N. E., Yarcheski, T. J., & Hanks, M. M. (2008). Psychometric evaluation of the interpersonal relationship inventory for early adolescents. Public Health Nursing, 25(4), 375–382.
    Zilcha-Mano, S., Mikulincer, M., & Shaver, P. R. (2011). An attachment perspective on human-pet relationships: Conceptualization and assessment of pet attachment orientations. Journal of Research in Personality, 45(4), 345–357.
    Zimmerman, J., & Forlizzi, J. (2014). Research through design in HCI. Ways of Knowing in HCI, 167–189. New York: Springer.
    Zulkifli, I. (2013). Review of human-animal interactions and their impact on animal productivity and welfare. Journal of Animal Science and Biotechnology, 4(1), 1–7.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE