簡易檢索 / 詳目顯示

研究生: 曹良闊
Tsao, Liang-Kuo
論文名稱: (Bi0.5Na0.5)TiO3-(Ba1-aSra)TiO3系統之合成、晶體結構與壓電性質
Synthesis, Crystal Structure and Piezoelectric Properties of (Bi0.5Na0.5)TiO3-(Ba1-aSra)TiO3 System
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 124
中文關鍵詞: 鐵電無鉛壓電
外文關鍵詞: ferroelectric, lead-free piezoelectric
相關次數: 點閱:66下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著各國環保意識的高漲,使得許多含有對環境及人體健康有害元素及材料將會被逐步禁止使用,而對於壓電陶瓷材料來說,也必定會朝開發出更優良的無鉛壓電材料的方向去努力。
    (Bi0.5Na0.5)TiO3為目前無鉛壓電材料中較具有潛力的材料系統,並且製程中不需倚賴特殊氣氛,而且不會有 Pb逸散問題,故本研究將以固態反應法合成具有 MPB (morphotropic phase boundary) 存在之 (1-x)(Bi0.5Na0.5)TiO3-x(Ba1-aSra)TiO3固溶系統,並針對 a=0.05及 0.3二系統中詳盡分析 x=0~0.12之晶體結構及基本電性質,以連結介電性質和晶體結構之關係。
    經實驗結果可以確定以下幾點,第一,合成出 (1-x)(Bi0.5Na0.5)TiO3-x(Ba1-aSra)TiO3單一相存在的固溶系統,並得到相對密度達 98%以上之緻密燒結體。第二,詳盡說明本系統隨著成份變動使其晶體變化的過程,並經由 Rietveld Mothod計算得到其晶格常數、晶格體積及理論密度值,進而分析晶體結構中各離子的分布及偏移情形。第三, MPB成分可由容忍因子推算且印證,於 a=0.05系統落於 x=0.06;而 a=0.3系統將移至 x=0.08。第四,提出本系統極化後介電常數及壓電係數表現主要影響因素為氧八面體中陰陽離子偏移量的改變量及 MPB之存在。

    With the raising of the environmental sense, some materials which contain harmful health elements and materials will be inhibited. For the piezoelectric materials, new lead-free piezoelectric materials with better electric properties will also be developed.
    (Bi0.5Na0.5)TiO3 is a excellent candidate system in lead-free piezoelectric materials system at present because of its outstanding advantage in free control atmosphere and no lead pollution. In this research, the Ba2+ and Sr2+ were both doped into this composition system via solid state reaction to synthesize (1-x)(Bi0.5Na0.5)TiO3 - x(Ba1-aSra)TiO3 solid solution system. When a is 0.05 and 0.3, the crystal structure and electric properties of the two system were studied in detail. According to the changes of the crystal structure and electric properties which resulted from the composition variation of x equal 0 to 0.12 in this research.
    The result show that:First, (1-x)(Bi0.5Na0.5)TiO3 - x(Ba1-aSra)TiO3 solid solution system could be synthesized successful in this research. And the relative density of sintered bulks of each composition could achieve 98% or over. Second, the phase transformation with composition variation of this system was showed in detail in this research. Besides, the cell parameters, cell volume, and theoretical density were also obtained after the Rietveld method calculation and get the displacement of atoms in the crystal structure. Third, the MPB could be calculated by tolerance factor and confirmed by the experiment result. The MPB region exists when a equal 0.05,x is 0.06 but a equal 0.3,x is 0.08. Fourth, presents the main factors which affect the dielectric properties after poling and piezoelectric coefficient are the modifiability of the displacement between cation and anion center in oxygen-octahedral structure and the existence of MPB.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究方向及目的 1 第二章 前人研究及理論基礎 5 2-1 晶體結構及電性質 5 2-1-1 (Bi0.5Na0.5)TiO3 (鈦酸鉍鈉) 5 2-1-2 (Bi0.5Na0.5)TiO3與 Pb(Zr,Ti)O3比較 6 2-1-3 (Ba,Sr)TiO3 (鈦酸鋇鍶) 7 2-1-4 (1-x)(Bi0.5Na0.5)TiO3-x(Ba1-aSra)TiO3 系統之研究 8 2-2 置換作用 9 2-2-1 置換原理 9 2-2-2 容忍因子 9 2-3 介電性質 10 2-3-1 極化機制 11 2-3-2 介電特性參數 12 2-4 壓電性質 13 2-4-1 壓電效應 13 2-4-2 壓電特性參數 15 2-4-3 形變相界 16 2-5 鐵電性質 17 2-5-1 鐵電效應 17 2-5-2 鐵電滯迴曲線 17 第三章 實驗方法與步驟 29 3-1 起始原料 29 3-2 粉末及燒結體製備 29 3-2-1 粉末製備 29 3-2-2 粉末之熱差/熱重分析 29 3-2-3 燒結體製備及燒結條件試驗 30 3-3 材料特性分析 30 3-3-1 燒結體密度量測 30 3-3-2 相鑑定 31 3-3-3 晶格常數分析 31 3-3-4 晶體結構分析 32 3-3-5 顯微結構觀察 34 3-4 材料性質分析 34 3-4-1 電性質量測與樣品準備 34 3-4-2 介電常數量測 34 3-4-3 室溫直流電阻率量測 35 3-4-4 鐵電滯迴曲線量測 35 3-4-5 極化 35 3-4-6 機電耦合因數量測 35 3-4-7 壓電係數量測 36 第四章 結果與討論 46 4-1 粉末合成 46 4-2 燒結 46 4-2-1 燒結試驗及燒結緻密度 47 4-2-2 燒結體之微結構觀察 47 4-3 晶體結構分析 48 4-3-1 晶格常數分析 48 4-3-2 Rietveld Mothod分析 50 4-4 性質量測 52 4-4-1 介電常數 52 4-4-2 直流電阻率 54 4-4-3 鐵電滯迴曲線 54 4-4-4 機電耦合因數及壓電係數 56 4-5 綜合討論 57 4-5-1 成分與結構之關係 57 4-5-2 結構與性質之關係 58 第五章 結論 100 參考文獻 101 附錄 A 105 附錄 B 120 附錄 C 122 自述 124

    (1) C. Peng, J. F. Li, and W. Gong, “Preparation and properties of (Bi1/2Na1/2)TiO3-Ba(Ti, Zr)O3 lead-free piezoelectric ceramics,” Mater. Lett., 59, 1576-1580 (2005).
    (2) W. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, and S. Fang, “Electromechanical and dielectric properties of Bi0.5Na0.5TiO3- Bi0.5K0.5TiO3-BaTiO3 lead-free ceramics,” Mater. Chem. Phys., 94, 328-332 (2005).
    (3) Y. Lin, “Effects of Eu2O3 on the phase transformation and piezoelectric properties of Na0.5Bi0.5TiO3-based ceramics,” J. Mater. Sci., B, 99, 449-452 (2003).
    (4) H. Nagata and T. Takenaka, “Lead-free piezoelectric ceramics of
    Bi1/2Na1/2TiO3-KNbO3-1/2(Bi2O3*Sc2O3) system,” Jpn. J. Appl. Phys., 37,
    5311-5314 (1998).
    (5) G. A. Smolenskii, V.A. Isupov, A.I.Agranovskaya, and N. N. Krainik, “New
    Ferroelectrics of Complex composition, ” Sov. Phys.-Solid State., 2﹝11﹞2651-2654
    (1961).
    (6) S.B. Vakhrushev, V. A. Isupov, B. E. Kvyakovsky, N. M. Okuneva, I. P. Pronin, G. A. Smolensky and P. P. Syrnikov. “Phase transition and soft mode in sodium bismuth titanate,” Ferroelectrics, 63, 153-160 (1985).
    (7) M. E. Lines and A. M. Glass, “Principles and applications of ferroelectrics and related materials,” Clarendon, Oxford (1977).
    (8) D. Hennings,and A. Schnell, “Diffuse Ferroelectric Phase Transition in Ba(Zr,Ti)O3 Ceramics,” J. American Ceramic Society,Vol 65,No.11,P539 (1982).
    (9) 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 222-224 (1994)。
    (10) 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 224-227 (1994)。
    (11) 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 118 (1994)。
    (12) B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic, New York
    (1971).
    (13) T. Takenaka, K. Maruyama, and K. Sakata,“(Bi1/2Na1/2)TiO3-BaTiO3 system for
    lead-free piezoelectric ceramics, ” Jpn. J. Appl. Phys., 30 [9B], 2236-2239 (1991).
    (14) Sakata K and Masuda Y., “ferroelectric and antiferroelectric properties of (Bi1/2Na1/2)TiO3-SrTiO3 solid solution ceramics,” Ferroelectrics,
    5, 347-349 (1974).
    (15) Isupov V S,Strelets P I,Serova I A,Yataenko N D and Shirobokikh T M “Pecuharities of ferroelectric phase transtion in solid solution of the (Bi1/2Na1/2)TiO3-PbTiO3 systems,” Sov Phys-Solid State(Engl Transl), 6, 615-619 (1964).
    (16) A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, “Dielectric and piezoelectric
    properties of(Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems,” Jpn. J. Appl. Phys., 38, 5564-5567 (1999).
    (17) B. J. Chu, “Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics,” J. Eur. Ceram. Soc., 22, 2115-2121 (2002).
    (18) A. M. Glazer, “Simple ways of determining perovskite structure,” Acta Cryst .,
    A31, 756-762 (1975).
    (19) B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland (1971).
    (20) D. Hennings, A. Schnell and G. Simon, “Diffuse ferroelectric phase transitions
    in Ba(Ti1-yZry)O3 ceramics” J. Am. Ceram. Soc., 65, 539 (1982).
    (21) X. G. Tang, “Effect of grain size on the dielectric properties and tunabilities of
    sol-gel derived Ba(Zr0.2Ti0.8)O3,” Solid State Commun., 121, 297 (2004).
    (22) J. A. Basmajian and R. C. Devries , “Phase equilibria in the system BaTiO3~ SrTiO3,” J. Am. Ceram. Soc., 40[11], 373-376 (1959).
    (23) H. Frayssignes, B.L. Cheng, G. Fantozzi and T. W. Button, “ Phase transformation in BST ceramics investigated by internal friction measurements J. Eur. Ceram. Soc.25, 3203-3206 (2005).
    (24) O. Muller and R. Roy, The major ternary structural families, Springer, New York (1974).
    (25) 吳朗,電子陶瓷-介電,全欣科技圖書,pp. 176-177 (1994)。
    (26) W.D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to ceramics, John
    Wiley and Sons, New York (1976).
    (27) C. G. Bergeron, S. H. Risbud, Introduction to phase equilibria in ceramics, The
    Am. Ceram. Soc. Inc., Columbus, Ohio (1984).
    (28) W. H. Lee, W. A. Groen, D. Hennings, “Dysprosium doped dielectric materials
    for sintering in reducing atmospheres,” J. Electronceram., 5, 31 (2000).
    (29) O. Muller and R. Roy, The Major Ternary Structural Families, Springer-Verlag,
    Berlin (1974).
    (30) W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, New York (1976).
    (31) 吳朗,電子陶瓷(壓電),全欣科技圖書,pp. 7-9 (1994)。
    (32) 吳朗,電子陶瓷(壓電),全欣科技圖書,pp. 31-41 (1994)。
    (33) 吳朗,電子陶瓷(壓電),全欣科技圖書,pp. 16-19 (1994)。
    (34) W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, New York (1976).
    (35) 謝煜弘,電子材料,新文京開發出版有限公司,(2003)。
    (36) C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. thesis, The Pennsylvania State University, U. S. A. (1990).
    (37) H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr., 22, 151 (1967).
    (38) A. C. Larson and R. B. V. Dreele, General structure analysis system,Los Alamos National Laboratory, Los Alamos (1988).
    (39) 李宜芳,(1-x)(Bi0.5Na0.5)TiO3-xBa(Ti0.95Zr0.05)O3 系統之合成、晶體結構、及壓電性質。國立成功大學資源工程研究所碩士論文 (2006)。
    (40) Z. Zhong and P. K. Gallagher, “Combustion synthesis and characterization of BaTiO3,” J. Mater. Res., 10, 4, Apr (1995).
    (41) T. Takenaka, “Current status and prospects of lead-free piezoelectric Ceramics,”
    J. Eur. Ceram. Soc., 25, 2693-2700 (2005).
    (42) T. Takenaka and H. Nagata, “Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3
    -1/2(Bi2O3‧Sc2O3) system,” Jpn. J. Appl. Phys. I, 36 [9B] 6055-6057 (1997).
    (43) R. Palai, R. N. P. Choudhary and H. S. Tewari, “Antiferroelectric phase transition
    in Pb(Mg1/2X1/2)O3 (X = Mo and W),” Mater. Chem. Phys., 73 86-92 (2002).

    下載圖示 校內:立即公開
    校外:2007-07-04公開
    QR CODE