簡易檢索 / 詳目顯示

研究生: 張莉毓
Teoh, Lay-Gaik
論文名稱: 奈米介孔氧化鎢在NOx氣體感測器和光致色變之應用
Gas Sensing and Photochromic Properties of Mesoporous Tungsten Oxide
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 136
中文關鍵詞: 氧化鎢介孔氣體感測器
外文關鍵詞: gas sensor, mesoporous, tungsten oxide
相關次數: 點閱:98下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著經濟的蓬勃發展,民生用品需求之增加,各種製造業之興起,工業污染亦隨之増加,人們生活環境的品質受到嚴重的水及空氣的污染,偵測污染源提出預警變得愈來愈重要。為了改善傳統氣體感測器之昂貴、笨重與偵測耗時的缺點,近年來已有許多的研究專注於薄膜氣體感測器之研發。本研究利用 block copolymer 作為界面活性劑,WCl6 為原料,以溶膠凝膠法製備介孔WO3薄膜,浸鍍於鍍有白金電極之 Al2O3 基板作為氣體感測器。經 X-ray,SEM,TEM,BET 分析元件材料微結構,並量測不同溫度下之電阻值變化,研究介孔結構之 WO3 對 NOx 氣體感測性質之影響。
    實驗結果顯示,本實驗所用之介孔 WO3 薄膜,當其製造時使用界面活性劑 F127 (Pluronic EO100PO64EO100) 經 250 ℃ 煆燒後,可獲得扭曲之 monoclinic 結構,由 XRD 圖形計算其晶粒大小約為 3.8 nm。對 NO2 氣體之感測於 100 ℃ 操作時有最大之靈敏度,偵測 3 ppm 之 NO2 之靈敏度約為 226。如改以界面活性劑 F68 製作,於操作溫度 120 ℃,通入 100 ppm NO 時,介孔氧化鎢感測器之靈敏度達最高值 160。
    此外,WO3 的高著色效率亦使其成為一種重要的變色材料。本研究同樣利用溶膠凝膠法製作介孔 WO3,並利用紫外-可見光光譜儀測定介孔 WO3 的能隙及探討其變色行為。研究結果顯示 ; 介孔 WO3 經 250 ℃ 煆燒後求出其能隙值為 3.5 eV。當介孔氧化鎢以紫外光照射時,由無色變為深藍色,照射前後之改變量幾乎可以完全回復。

    Our environment has suffered damage as the economic expands. In order to improve the drawbacks of expensive, heavy and time-consuming in traditional gas sensors, many studies have focused on thin film gas sensor recently.
    Mesoporous WO3 thin films were deposited on Al2O3 substrate as gas sensor by sol-gel process in this study. The effects of calcining temperatures on the structure of mesoporous WO3 were investigated by X-ray diffraction, SEM, TEM and BET analyses. Sensor properties for NO2 were also investigated.
    Mesoporous WO3 thin film obtained is characterized with distorted monoclinic structure. The grain size of 3.8 nm calculated from XRD result was obtained after calcining at 250℃for 5 hrs. The sensitivity for NO2 depends on the operation temperature, which has a maximum value of 226 for 3 ppm NO2 at 100℃ with good reproductivity and stability.
    For the optical properties, the optical band gap value of mesoporous WO3 is found to be 3.5 eV. The mesoporous WO3 exhibits the photochromic effect upon exposure to the UV-light. The optical change during the exposure and removal of the UV-light is almost reversible.

    摘要………………………………………………………….…Ⅰ 英文摘要……………………………………………………….Ⅱ 總目錄………………………………………………………….Ⅲ 圖目錄………………………………………………………….Ⅶ 表目錄……………………………………………………….…XI 第一章 緒論 1-1 前言………………………………………………………...1 1-2 介孔材料和感測器簡介…………………………………...3 1-3 變色材料……………………………………………..…….4 1-4 研究動機與目的……………………………………..…….7 第二章 理論基礎與文獻回顧 2-1界面活性劑性質簡介…………………………………..…..8 2-1-1 分子結構…………………………………………..……..8 2-2 微胞的形成………………………………………………..10 2-3 界面活性劑分子聚集體之結構…………………………..13 2-4 介孔材料的合成…………………………………………..17 2-5 金屬氧化物氣體感測原理…………………...…………...21 2-6 影響感測靈敏度之因素……………………………...…...23 2-7 WO3 之基本性質………………………………………...25 2-7-1 晶體結構…………………………………………….…25 2-7-2 半導體特性…………………………………………….25 2-8 WO3 薄膜感測之相關研究………………………….......27 2-9 WO3 鍍膜方式之研究………………………………...…29 2-10 變色原理……………………………………………..…30 2-11 溶膠-凝膠法………………………………………..…..30 第三章 實驗方法與步驟 3-1 化學藥品……………………………………………..…..32 3-2 氧化鎢合成步驟……………………………………..…..32 3-3材料分析與性質量測……………………………….……35 第四章 結果與討論 第一部分 奈米氧化鎢之晶粒成長對介孔結構之影響 (Pluronic EO100PO64EO100 ;F127) 4-1-1 熱重分析……………………………………………….42 4-1-2 FTIR分析………………………………………………44 4-1-3 XRD分析……………………………………………….46 4-1-4 TEM分析……………………………….………………48 4-1-5 氮氣吸脫附曲線分析…………………………………..48 4-1-6 晶粒成長模型…………………………………….…… 53 4-1-7 活化能的探討……………………………………….… 53 4-1-8小結…………………………….…………………….… 57 第二部分 奈米級介孔氧化鎢氣體感測 (Pluronic EO100PO64EO100 ;F127) 4-2-1 結構分析……………………………………………… .58 4-2-2 拉曼光譜分析…………………………………………..58 4-2-3 表面型態與微結構……………………………………..61 4-2-4 比表面積………………………………………………..65 4-2-5 NO2氣體感測性質………………………………...….....67 4-2-6 小結………………………………………………..…….77 第三部分 蟲狀結構之介孔氧化鎢氣體感測 (Pluronic EO133PO50EO133 ;F108) 4-3-1 結構分析…………………………………………...…….78 4-3-2 電子顯微鏡分析………………………………………....80 4-3-3 氮氣吸脫附曲線分析………………………………..…..80 4-3-4 氣體感測分析……………………………………..……..84 4-3-5 小結…………………………………………………..…..90 第四部分 介孔氧化鎢應用於光致色變及NO氣體感測研究 (Pluronic EO77PO29EO77; F68) 4-4-1 FTIR分析………………………………………………….92 4-4-2 結構分析……………………………………………......92 4-4-3 電子顯微鏡分析……………………………………......95 4-4-4 氮氣吸脫附曲線分析……………………………….….95 4-4-5 能隙的計算……………………………………….....….98 4-4-6 光致色變………………………………………….….…98 4-4-7 感測性質量測………………………………….……....102 4-4-8 小結………………………………………………….…108 第五部分 界面活性劑為模板輔助溶膠-凝膠法合成奈米 結晶氧化鎢粉末(Pluronic EO133PO50EO133; F108) 4-5-1 熱重分析…………………………………………..……112 4-5-2 XRD分析…………………………………….………….112 4-5-3 晶粒大小的分析…………………………………….…..115 4-5-4 小結………………………………………………….…..120 第五章 總結論……………………………………………........121 第六章 參考資料…………………………………………........123 誌謝…………………………………………………...……...…135 授權書…………………………………………………………..136

    [1] 蔡嬪嬪,曾明漢,氣體感測器之簡介,應用市場,材料與社會, 68, 50 (1992)
    [2] A. M. Azad, S. A. Akbar, Solid-State Gas Sensors: A Review, J. Electrochem. Soc. 139, 3690 (1992)
    [3] 楊瑪利,台灣環境總體檢,天下雜誌,181, 90(1996)
    [4] C. T. Kresge, M. E. Leonowicz, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359, 710 (1992).
    [5] J. S. Beck, J. C. Vartuli, W. J. Roth, A new family of mesoporous molecular sieves prepared with liquid crystal template, J. Am. Chem. Soc. 114, 10834 (1992).
    [6] C. G. Wu, T. Bein, Conducting Polyaniline Filaments in a Mesoporous Channel Host Science 264, 1757 (1994).
    [7] G. Sberveglieri, Recent developments in semiconducting thin-film gas sensors, Sen.Actuators B, 23, 103 (1995)
    [8] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks Nature 396, 152 (1998).
    [9] 邱顯堂, ‘變色材料’, 化工, 38, 2, (1991)。
    [10] 何國川, ‘電化學與無窗簾時代’, 化工, 37, 3, (1990) 。
    [11] 楊明長, ‘電致色變系統簡介’, 化工, 40, 2, (1993)。
    [12] 焦小浣, ‘光窗透明材料的實驗研究’, 太陽能學報, 8, 4, (1997) 。
    [13] The catalogue of Pilkington company (1996).
    [14] N. Yamazoa, N. Miura, Environmental gas sensing, Sens. Actuators B 20, 95 (1994).
    [15] 高嘉珮,“中孔洞矽氧分子篩合成條件之控制及動力學研究”,國立台灣大學化學研究所碩士論文,2000,p.5。高嘉珮,“中孔洞矽氧分子篩合成條件之控制及動力學研究”,國立台灣大學化學研究所碩士論文,2000,p.5。
    [16] B. Lindmanm and H. Wennerstrom, Micelles: Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg (1980), p.6.
    [17] Y. C. Lin and S. H. Chen, “Ion correlations and counter-ion condensation in ionic micellar solutions” , Condens.Matter , 8(1996)12169.
    [18] J. N. Israelachvili, S. Marcelja and R. G. Horn, “Physical principles of membrane organization”, Q. Rev. Biophys , 13(1980)121.
    [19] D. J. Mitchell and B. W. Ninham, “Micelles, vesicles and microemulsionsq”, J. Chem. Soc., Faraday, Trans., 77(1981)1264.
    [20] D. F. Evans and H. Wennerstrom, “The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet”, VCH Pubisher, New York, (1994), p.14.
    [21] R. J. Stokes and D. F. Evans, “Fundamentals of Interfacial Engineering”, VHC Publisher, New York, Wiley, (1997), p. 215.
    [22] 鄭雅如,“中孔徑分子篩MCM41的合成與形態學之研究”,國立台灣大學化學研究所碩士論文,1997,p.12。
    [23] J. Y. Ying, C. P. Mehnert and M.S.Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials ”, Angew Chem. Int. Ed., 38 (1999)56.
    [24] S. M. Sze, “Semiconductor sensors”, John Wiley & Sons, New York,1994, pp. 383-410 (chap. 8).
    [25] C. Xu, J. Tamaki, N. Miura and N. Yamazoe, “Grain size effects on gas sensitivity of porous SnO2-Based elements”, Sensors andActuators B, 3(1991) 147-155.77
    [26] Y. Shimizu and M. Egashira, “Basic aspects and challenges of semiconductor gas sensors”, MRS. Bulletin, June (1999) 18-24.
    [27] G. Williams and G. S. V. Coles, “Gas-Sensing potential of nanocrystalline tin dioxied produced by a laser ablation technique”, MRS. Bulletin, June (1999) 25-29.
    [28] H. Meixner, J. Gerblinger, U. Lampe and M. Fleischer, “Thin-film gas sensors based on semiconducting metal oxide”, Sensors and Actuators B, 23 (1995) 119-125.
    [29] N. Yamazoe and N. Miura, “Environmental gas sensing“, Sensors and Actuators B, 20 (1994) 95-102.
    [30] A. Diegues, A. Romano-Rodriguez, J. R. Morante, U. Weimar, M. Schweizerr-Berberich, W. Gopel, “Morphological analysis of nanocrystalline SnO2 for gas sensor applications”, Sensors and Actuators B, 31 (1996) 1-8.
    [31] N. Yamazoe, “New approaches for improving semiconductor gas sensors”, Sensors and Actuators B, 5 (1991) 7-19.
    [32] L. E. Depero, M. Ferroni, V. Guidi, G. Marca, G. Martinelli, P.Nelli, L. Sangaletti and G. Sberveglieri, “Preparation and micro-structure characterization of nanosize thin film of TiO2-WO3 as a novel material with high sensitivity towards NO2”, Sensors and Actuators B, 35-36 (1996) 381-383.
    [33] Y. Zahao, Z. C. Feng, Y. Liang, “Pulsed laser deposition of WO3-base film for NO2 gas sensor application” Sensors and Actuators B, 66 (2000) 171-173.
    [34] J. Tamaki, T. Maekawa, N. Miura, N. Yamazoe, “CuO-SnO2 element for highly sensitive and selective detections of H2S”, Sensors and Actuators B, 9 (1992) 197-203.
    [35] P. M. Woodward, A. W. Sleight, “Ferroelectric tungsten trioxide”, J. Solid State Chem. 131 (1997) 9-17.
    [36] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics”, 2nd edition, Wiley-Interscience Publication, New York, 1975, pp.841-912 (chap. 17).
    [37] K. Ihokura and J. Watson, “The Stannic Oxide Gas Sensor”, CRC Press, 1994, pp. 1-9 (chap. 1).
    [38] Z. Xu, J. F. Vetelino, R. Lec and D. C. Parker, “Electrical properties of tungsten trioxide films”, J. Vac. Sci. Technol. A8 (1990) 3634-3638.
    [39] D. J. Dwyer, ”Surface chemistry of gas sensors. H2S on WO3 films”, Sensor and Actuators B, 5 (1991) 155-159.
    [40] N. Yamazoe and N. Miura, in G. Sberveglieri (ed.), “Gas Sensors”, Kluwer Academic Publishers, Dordrecht, Netherlands, 1992, pp. 1-42 (chap. 1).
    [41] M. Penza, M. A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci and G. Cassano, “Tungsten trioxide (WO3) sputtered thin films for a NOX gas sensor”, Sensors and Actuators B, 50 (1998) 9-18.
    [42] D. J. Smith, J. F. Vetelino, R. S. Falconer and E. L. Wittman, “Stability, sensitivity and selectivity of tungsten trioxide films for sensing applications”, Sensors and Actuators B, 13-14 (1993) 264-268.
    [43] M. Akiyama, Z. Zhang, J. Tamaki, N. Miura, N. Yamazoe and T. Harada, “Tungsten oxide-based semiconductor sensor for detection of nitrogen oxides”, Sensors and Actuators B, 13-14 (1993) 619-620.
    [44] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura and N. Yamazoe, “Grain-size effects in tungsten oxide-based sensor for nitrogen oxide”, J. Electrochem. Soc. 141 (1994) 2207-2210.
    [45] M. Penza, C. Martucci and G. Cassano, “NOX gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers”, Sensors and Actuators B, 50 (1998) 52-59.
    [46] N. Özer, “Optical and electrochemical characteristics of sol-gel deposited tungsten oxide films: a comparison”, Thin Solid Films, 304 (1997) 310-314.
    [47] X. Wang, G. Sakai, K. Shimanoe, N. Miura, N. Yamazoe, “Spin-coated thin films of SiO2-WO3 composites for detection of sub-ppm NO2”, Sensors and Actuators B, 45 (1997) 141-146.
    [48] D. S. Lee, D. D. Han, J. S. Huh, D. D. Lee, “Nitrogen oxide-sensing characteristics of WO3-based nanocrystalline thick film gas sensor”, Sensors and Actuators B, 60 (1999) 57-63.
    [49] D. S. Lee, D. D. Han, J. S. Huh, D. D. Lee, “The TiO2-adding effects in WO3-based NO2 sensors prepared by coprecipitation and precipitation method”, Sensors and Actuators B, 65 (2000) 331-335.
    [50] C. Cantalini, W. Wlodarski, Y. Li, M. Passacantando, S. Santucci, E. Comini, G.Faglia, G. Sberveglieri, “Investigation on the O3 sensitivity properties of WO3 thin films prepared by sol-gel, thermal evaporation and r.f. sputtering techniques”, Sensors and Actuators B, 64 (2000) 182-188.
    [51] C.D. Feng, Y. Shimizu, M.Egashira, “Effect of gas diffusion process on sensing properties of SnO2 thin film in a SiO2/SnO2 layer-built structure fabricated by sol-gel prcoess”, J.Electrochem. Soc. 141 (1994) 220-225.
    [52] Y. Takahashi, Y. Wada, “Dip-coating of Sb-doped SnO2 films by ethanolamine-alkoxide method”, J. Electrochem. Soc. 137 (1990) 267-272.
    [53] C. J. Brinker, G. W. Scherer, “Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing”, Academic Press, San Diego, 1990 pp. 1-18 (chap. 1).
    [54] Gautheron, M.Labeau, G. Delabougiser, U. Schmatz, “Undoped and Pd-doped SnO2 thin films for gas sensors”, Sensors and Actuators B, 15-16 (1993) 357-362.
    [55] M. Brogren, G. L. Harding, Titanium-aluminium-nitride coatings for satellite temperature control, Thin Solid Films, 370 (2000)268.
    [56] A. Donnadieu, Material Science and Engineering B, 3 (1989)185.
    [57] B. Reichman and A. J. Bard, J. Electrochem. Soc., 126 (1979)583.
    [58] H. Dislich, “Thin Film from the Sol-Gel Process, Sol-Gel Technology for Thin Films, Fibers, Performs, Electrons and Specialty Shapes”, Edited by Lisa C. Klein, Noyes Publications, 1988 pp.50-56.
    [59] H. Dislich, P. Hinz, “History and principles of the sol-gel process and some new multicomponent oxide coatings”, J. Non-Cryst. Solids, 48 (1982) 11-16.
    [60] S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd Ed., Academic Press, New York (1982).
    [61] S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann,” Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases ” , Nature, 385 (1997)420.
    [62] L. J. Bellamy, The Infrared Spectra of Complex Molecules, vol. 1, 3rd ed., Chapman Hall, New York, (1995).
    [63] G. J. Li and S. Kawi, Synthesis, characterization and sensing. application of novel semiconductor oxides, Talanta 45, 759 (1998).
    [64] I. M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlaz, Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates, J. Solid State Chem. 67, 235 (1987).
    [65] L. H. M.Krings and W. Talen, Wet chemical preparation and characterization of electrochromic WO3, Solar Energy Materials and Solar Cells 54, 27 (1998).
    [66] B. D. Cullity, Elements of X-ray Diffraction; Addison-Wesley; Reading, MA, (1978).
    [67] E. Ozkan, S. H. Lee, P. Liu, C. E. Tracy, F. Z. Tepehan, J. R. Pitts, and S. K. Deb, Electrochromic and optical properties of mesoporous tungsten oxide films, Solid State Ionics 149, 139 (2002).
    [68] W. Cheng, E. Baudrin, B. Dunn, and J. I. Zink, Synthesis and electrochromic properties of mesoporous tungsten oxide, J. Mater. Chem. 11, 92 (2001).
    [69] B. Lee, T. Yamashita, D. Lu, J. N. Knodo, and K. Domen, Single-Crystal Particles of Mesoporous Niobium-Tantalum Mixed Oxide Chem. Mater. 14, 867 (2002).
    [70] M. Jarcho, C. H. Bolen, and R. H. Doremus, J. Mater. Sci. 11, 2027 (1976).
    [71] S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, Reduced Activation Energy for Grain Growth in Nanocrystalline Yttria-Stabilized Zirconia, Nano Lett. 3, 397 (2003).
    [72] M. Ferroni, V. Guidi, E. Comini, and G. Sberveglieri, Electron microscopy and Rutherford backscattering study of nucleation and growth in nanosized W–Ti–O thin films, J. Appl. Phys. 88, 1097 (2000).
    [73] A. P. Hynes, R. H. Doremus, and R. W. Siegel, Sintering and Characterization of Nanophase Zinc Oxide, J. American Ceramic Soc. 85, 1979 (2002).
    [74] E. L. Crepaldi, G. J. de, A. A. Soler-Illia, A. Bouchara, D. Durand, and C. Sanchez, Controlled formation of highly ordered cubic and hexagonal mesoporous nanocrystalline yttria-zirconia and ceria-zirconia thin films exhibiting high thermal stability Angew. Chem. Int. Ed. 42, 347 (2003).
    [75] B. Pecquenard, H.Lecacheux, J. Livage and C. Julien, “Orthorhombic WO3 Formed via Ti-Stabilized WO3 1/3H2O Phase”, J. Solid State Chemistry, 135 (1998) 159-168.
    [76] Y. K. Chung, M. H. Kim, W. S. Um, Gas sensing properties of WO3 thick film for NO2 gas dependent on process condition, Sens. Actuators B 60 (1999) 49-56.
    [77] J. Miasik, A. Hooper, B. Tofield, Conducting polymer gas sensors, J. Chem. Soc. Faraday Trans.1 82, (1986) 1117-1126.
    [78] G. Sberveglieri, S. Groppelli, P. Nelli, Highly sensitive and selective NOx and NO2 sensor based on Cd-doped, Sens. Actuators B 4 (1991) 457-461.
    [79] M. J. Madou and S. R. Mirrion, “Solid-state Background, in : Chemical Sensing with Solid State Devices”, Academic Press, Boston , 1989, pp. 67-104 (chap. 3).
    [80] C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Correlation between gas sensitivity and crystallite size in porous SnO2-based sensors, Chem. Lett. 2 (1990) 441-444.
    [81] C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Relationship between gas sensitivity and microstructure of porous SnO2, Denki Kagaku (Electrochemistry) 58 (1990) 1143-1148.
    [82] X. Wang, S. S. Yee, W. P. Carey, Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors, Sens. Actuators B 24 (1995) 454-457.
    [83] H. Arai, H. Tominaga, An infrared study of nitric oxide adsorbed on rhodium-alumina catalyst, J. Catal. 43 (1976) 131-142.
    [84] L. E. Depero, S. Groppelli, G. Sberveglieri and E. Tondello, J. Solid State Chem. 121, 379 (1996).
    [85] N. Yamazoe, N. Miura, Some basic aspects of semiconductor gas sensors, in: S. Yamauchi (Ed.), Chemical Sensor Technology, 4, Kodansha, Tokyo, (1992).
    [86] H. T. Sun, C. Cantalini and M. Pelino, Microstructural effect on NO2 sensitivity of WO3 thin film gas sensors Part 1. Thin film devices, sensors and actuators, Thin Solid Films 287, 258 (1996).
    [87] G. J. Li and S. Kawi, High-surface-area SnO2: A novel semiconductor-oxide gas sensor, Mater. Lett., 34, 99(1998).
    [88] T. R. Pauly, T. J. Pinnavaia and S. J. L. Billinge, Textural Mesoporisity and the Catalytic Activity of Mesoporous Molecular Sieves with Wormhole, J. Am. Chem. Soc., 121, 8835 (1999).
    [89] M. J. Madou and S. R. Mirrion, Solid-state background, in : Chemical Sensing with Solid State Devices, Academic Press, Boston, 1989, pp. 13-65 (chap. 2).
    [90] F. Jona, G. Shirane, Ferroelectric Crystals, Dover Publications, New York, 1993, 254.
    [91] C. G. Grandqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Ronnow, M. Stromme Matsson, M. Veszelei, G. Vaivars, Recent advances in electrochromics for smart windows applications, Sol. Energy 1998, 63, 199.
    [92] S. K. Deb, Optical and photoelectric properties and colour centres in thin films of tungsten oxide, Philos. Mag. 1973, 27, 801.
    [93] A. Rougier, F. Portemer, A. Quede, M. El Marssi, Characterization of pulsed laser deposited WO3 thin films for electrochromic devices, Appl. Sur. Sci., 153, 1. 1999,
    [94] T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, J. Yao, Photochromism of WO3 Colloids Combined with TiO2 Nanoparticles, J. Phys. Chem. B 2002, 106, 12670.
    [95] S. T. Li and M. S. El-Shall, Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles, Nanostruct. Mater., 1999, 12,215-219.
    [96] S. G. Dixit, A. R. Mahadeshwar, S. K. Haram, Some aspects of the role of surfactants in the formation of nanoparticles, Colloids Surf. A : Physicochem. Eng. Aspects 1998, 133, 69.

    下載圖示 校內:立即公開
    校外:2005-06-21公開
    QR CODE