| 研究生: |
洪端陽 Hong, Duang-Yang |
|---|---|
| 論文名稱: |
三氧化二砷對角質細胞的雙重作用機轉 Dual models of action by arsenic trioxide in keratinocytes |
| 指導教授: |
黃暉升
Huang, Huei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 三氧化二砷 、雙相型 、協同作用 |
| 外文關鍵詞: | biphasic, TGF-beta, arsenic trioxide, TSA |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砷化物是已知的致癌物,卻也有效用來治療許多的疾病,包括急性前骨髓性白血病、癌症和皮膚疾病。然而至今對於砷化物的致癌與治療效果的機轉仍未完全釐清。在我們實驗室之前的研究中,已經證實了三氧化二砷 (Arsenic trioxide, ATO) 會誘導 JNK 訊息傳遞路徑,進一步 N端 (63/73) 磷酸化的 c-Jun 會與 TGIF/HDAC1 結合,抑制 p21WAF1/CIP1 (p21) 基因的表現。但是 ATO 亦活化 Ras/Raf/ERK 訊息傳遞路徑,促進 c-Fos 蛋白表現而增加 p21 的表現。在本論文中,我們觀察到了給予較低劑量的 ATO 會增加細胞的生長,相反較高劑量則增加細胞的死亡在許多細胞株,如 A431、HaCaT、Huh7、MCF7 和 Hep3B 細胞。另外較高劑量的 ATO 能夠持續活化 ERK 訊息傳遞路徑,增加 c-Fos 蛋白而誘導 p21 的表現。此外我們也觀察到 ATO 可誘導 smad3 蛋白的磷酸化,smad3 的過度表現會增加 p21 促進子的活性,而且 ATO 誘導的 p21 表現會被 TGF-β type I receptor 抑制劑 SB431542 部分抑制。因此我們推測較高劑量 ATO 所誘導的持續 ERK 活化及 TGFβ/smad 訊息傳遞路徑可以拮抗 JNK 的作用,以誘導 p21 的活化。而且 ATO 合併處理 TSA (HDACs 抑制劑) 能夠協同性增加 p21 的表現及 A431 細胞的死亡。故我們推測 ATO 合併 TSA 或是 SP600125 (JNK 抑制劑) 或是將 TGIF 蛋白 knock-down,可能可以用來改善 ATO 在臨床上治療牛皮癬或癌症的效果。
Although arsenic is an infamous carcinogen, it has been effectively used to treat many ailments, including acute promyelocytic leukemia, solid tumors, and some skin diseases. So far, the mechanisms of the arsenic-induced carcinogenic or therapeutic effects are still poorly understood. Previously, we have demonstrated that ATO-induced JNK pathway can phosphorylate N-terminus of c-Jun (63/73) to recruit TGIF/HDAC1 to suppress p21WAF1/CIP1 (p21) expression, but the induced Ras/Raf/ERK pathway can enhance c-Fos expression to increase p21 expression. Presently, we observed that treatment with low doses of ATO can increase cell growth, but high doses of ATO can enhance cell death in A431, HaCaT, Huh7, MCF7, and Hep3B cell lines. In addition, high dose of ATO could sustain ERK activation, and then increase c-Fos protein to induce p21 expression. Furthermore, ATO-induced smad3 phosphorylation was also observed. Over-expression of smad3 could activate p21 promoter activity, and ATO-induced p21 expression could partially be inhibited by SB431542, TGFβ type I receptor inhibitor. Therefore, we suggest that sustained ERK activation and TGFβ/smad signaling in response to high dose of ATO could compete against JNK pathway and then induce p21 activation. Finally, ATO combined with TSA (a HDACs inhibitor) could synergistically enhance ATO alone induced p21 expression and subsequent cell death in A431 cells. We suggest that ATO combined with JNK inhibitor, or with HDAC1 inhibitor, or with knock-down of the TGIF expression could be used to improve the therapeutic effects of ATO in the clinical therapy of psoriasis or cancers.
1. Cui X, Kobayashi Y, Akashi M and Okayasu R. Metabolism and the Paradoxical Effects of Arsenic: Carcinogenesis and Anticancer. Curr Med Chem, 15(22):2293-2304, 2008.
2. Yu H-S, Liao W-T and Chai C-Y. Arsenic Carcinogenesis in the Skin. J Biomed Sci, 13(5):657-666, 2006.
3. Caussy D and Priest ND. Introduction to arsenic contamination and health risk assessment with special reference to Bangladesh. Rev Environ Contam Toxicol, 197:1-15, 2008.
4. Chan PC and Huff J. Arsenic carcinogenesis in animals and in humans: Mechanistic, experimental, and epidemiological evidence. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 15(2):83 - 122, 1997.
5. Ouyang W, Li J, Zhang D, Jiang B-H and Huang C. PI-3K/Akt signal pathway plays a crucial role in arsenite-induced cell proliferation of human keratinocytes through induction of cyclin D1. J Cell Biochem, 101(4):969-978, 2007.
6. Weiming O, Wenjing L, Dongyun Z, Jinlong J, Qian M, Jingxia L, Xianglin S, Jingyuan C, Jimin G and Chuanshu H. PI-3K/Akt Pathway-Dependent Cyclin D1 Expression Is Responsible for Arsenite-Induced Human Keratinocyte Transformation. Environ Health Perspect, 116(1):1-6, 2008.
7. Ouyang W, Li J, Ma Q and Huang C. Essential roles of PI-3K/Akt/IKKbeta/NFkappaB pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells. Carcinogenesis, 27(4):864-873, 2006.
8. Zhang D, Li J, Gao J and Huang C. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells. Toxicol Appl Pharmacol, 235(1):18-24, 2009.
9. Zhang T-C, Schmitt MT and Mumford JL. Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro. Carcinogenesis, 24(11):1811-1817, 2003.
10. Benbrahim-Tallaa L, Webber MM and Waalkes MP. Acquisition of androgen independence by human prostate epithelial cells during arsenic-induced malignant transformation. Environ Health Perspect, 113(9):1134-9, 2005.
11. Chien C-W, Chiang M-C, Ho I-C and Lee T-C. Association of Chromosomal Alterations with Arsenite-Induced Tumorigenicity of Human HaCaT Keratinocytes in Nude Mice. Environ Health Perspect, 112(17):1704-1710, 2004.
12. Zhao CQ, Young MR, Diwan BA, Coogan TP and Waalkes MP. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A, 94(20):10907-10912, 1997.
13. Zhu J, Chen Z, Lallemand-Breitenbach V and Thé Hd. How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer, 2(9):705-714, 2002.
14. Miller WH, Jr., Schipper HM, Lee JS, Singer J and Waxman S. Mechanisms of Action of Arsenic Trioxide. Cancer Res, 62(14):3893-3903, 2002.
15. Cohen MH, Hirschfeld S, Honig SF, Ibrahim A, Johnson JR, O'Leary JJ, White RM, Williams GA and Pazdur R. Drug Approval Summaries: Arsenic Trioxide, Tamoxifen Citrate, Anastrazole, Paclitaxel, Bexarotene. Oncologist, 6(1):4-11, 2001.
16. Kito M, Matsumoto K, Wada N, Sera K, Futatsugawa S, Naoe T, Nozawa Y and Akao Y. Antitumor effect of arsenic trioxide in murine xenograft model. Cancer Sci, 94(11):1010-1014, 2003.
17. Maeda H, Hori S, Nishitoh H, Ichijo H, Ogawa O, Kakehi Y and Kakizuka A. Tumor Growth Inhibition by Arsenic Trioxide (As2O3) in the Orthotopic Metastasis Model of Androgen-independent Prostate Cancer. Cancer Res, 61(14):5432-5440, 2001.
18. Øra I, Bondesson L, Jönsson C, Ljungberg J, Pörn-Ares I, Garwicz S and Påhlman S. Arsenic Trioxide Inhibits Neuroblastoma Growth in Vivo and Promotes Apoptotic Cell Death in Vitro. Biochem Biophys Res Commun, 277(1):179-185, 2000.
19. Cui X, Wakai T, Shirai Y, Yokoyama N, Hatakeyama K and Hirano S. Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol, 37(3):298-311, 2006.
20. Dilda PJ and Hogg PJ. Arsenical-based cancer drugs. Cancer Treat Rev, 33(6):542-564, 2007.
21. Jackson R and Grainge JW. Arsenic and cancer. CMAJ, 113(5):396-401, 1975.
22. Cuzick J, Evans S, Gillman M and Evans DAP. Medicinal arsenic and internal malignancies. Br J Cancer, 45(6):904-11, 1982.
23. Liu B, Pan S, Dong X, Qiao H, Jiang H, Krissansen GW and Sun X. Opposing effects of arsenic trioxide on hepatocellular carcinomas in mice. Cancer Sci, 97(7):675-681, 2006.
24. Abukhdeir AM and Park BH. P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med, 10:e19, 2008.
25. Liu S, Bishop WR and Liu M. Differential effects of cell cycle regulatory protein p21WAF1/Cip1 on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updat, 6(4):183-195, 2003.
26. Huang H-S, Liu Z-M, Ding L, Chang W-C, Hsu P-Y, Wang S-H, Chi C-C and Chuang C-H. Opposite effect of ERK1/2 and JNK on p53-independent p21WAF1/CIP1 activation involved in the arsenic trioxide-induced human epidermoid carcinoma A431 cellular cytotoxicity. J Biomed Sci, 13(1):113-125, 2006.
27. Basile JR, Eichten A, Zacny V and Münger K. NF-κB-Mediated Induction of p21Cip1/Waf1 by Tumor Necrosis Factor α Induces Growth Arrest and Cytoprotection in Normal Human Keratinocytes. Mol Cancer Res, 1(4):262-270, 2003.
28. Harvat BL and Jetten AM. Decreased growth inhibitory responses of squamous carcinoma cells to interferon-gamma involve failure to recruit cki proteins into cdk2 complexes. J Invest Dermatol, 117(5):1274-1281, 2001.
29. Todd C and Reynolds NJ. Up-Regulation of p21WAF1 by Phorbol Ester and Calcium in Human Keratinocytes through a Protein Kinase C-Dependent Pathway. Am J Pathol, 153(1):39-45, 1998.
30. Missero C, Calautti E, Eckner R, Chin J, Tsai LH, Livingston DM, Dorro GP, CATERINA MISSERO* EC, RICHARD ECKNERt, JEANNIE CHIN*, LI HUEI TSAIt,, DAVID M. LIVINGSTONt AGPD, Missero C, Calautti E, Eckner R, Chin J, Tsai LH, Livingston DM and Dotto GP. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc Natl Acad Sci U S A, 92(12):5451-5455, 1995.
31. Missero C, Cunto FD, Kiyokawa H, Koff A and Dotto GP. The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev, 10(23):3065-3075, 1996.
32. Topley GI, Okuyama R, Gonzales JG, Conti C and Dotto GP. p21WAF1/Cip1 functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc Natl Acad Sci U S A, 96(16):9089-9094, 1999.
33. Stern RS. Psoriasis. Lancet, 350(9074):349-353, 1997.
34. Takahashi H, Ibe M, Kinouchi M, Ishida-Yamamoto A, Hashimoto Y and Iizuka H. Similarly potent action of 1,25-dihydroxyvitamin D3 and its analogues, tacalcitol, calcipotriol, and maxacalcitol on normal human keratinocyte proliferation and differentiation. J Dermatol Sci, 31(1):21-28, 2003.
35. Pol A, Bergers M and Schalkwijk J. Comparison of Antiproliferative Effects of Experimental and Established Antipsoriatic Drugs on Human Keratinocytes, Using a Simple 96-Well-Plate Assay. In Vitro Cell Dev Biol Anim, 39(1/2):36-42, 2003.
36. Schwartz PM, Barnett SK, Atillasoy ES and Milstone LM. Methotrexate induces differentiation of human keratinocytes. Proc Natl Acad Sci U S A, 89(2):594-598, 1992.
37. Bonnekoh B, Weversa A, Geisel J, Rasokat H and Mahrle G. Antiproliferative potential of zidovudine in human keratinocyte cultures. J Am Acad Dermatol, 25(3):483-490, 1991.
38. Deyrieux AF and Wilson VG. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology, 54(2):77-83, 2007.
39. Thielitz A, Bukowska A, Wolke C, Vetter R, Lendeckel U, Wrenger S, Hashimoto Y, Ansorge S, Gollnick H and Reinhold D. Identification of extra- and intracellular alanyl aminopeptidases as new targets to modulate keratinocyte growth and differentiation. Biochemical and Biophysical Research Communications, 321(4):795-801, 2004.
40. Farkas Á, Kemény L, Széll M, Dobozy A and Bata-Csörgo Z. Ethanol and acetone stimulate the proliferation of HaCaT keratinocytes. Archives of Dermatological Research, 295(2):56-62, 2003.
41. Tse W-P, Cheng CHK, Che C-T and Lin Z-X. Arsenic Trioxide, Arsenic Pentoxide, and Arsenic Iodide Inhibit Human Keratinocyte Proliferation through the Induction of Apoptosis. J Pharmacol Exp Ther, 326(2):388-394, 2008.
42. Facchinetti MM, Siervi AD, Toskos D and Senderowicz AM. UCN-01-Induced Cell Cycle Arrest Requires the Transcriptional Induction of p21waf1/cip1 by Activation of Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase/Extracellular Signal-Regulated Kinase Pathway. Cancer Res, 64(10):3629-3637, 2004.
43. Soucy NV, Ihnat MA, Kamat CD, Hess L, Post MJ, Klei LR, Clark C and Barchowsky A. Arsenic stimulates angiogenesis and tumorigenesis in vivo. Toxicol Sci, 76(2):271-9, 2003.
44. Bernstam L and Nriagu J. Molecular aspects of arsenic stress. J Toxicol Environ Health B Crit Rev, 3:293-322, 2000.
45. Liu Z-M and Huang H-S. Arsenic trioxide phosphorylates c-Fos to transactivate p21WAF1/CIP1 expression. Toxicol Appl Pharmacol, 233(2):297-307, 2008.
46. Liu Z-M and Huang H-S. Inhibitory role of TGIF in the As2O3-regulated p21WAF1/CIP1 expression. J Biomed Sci, 15(3):333-342, 2008.
47. Liu Z-M and Huang H-S. As2O3-induced c-Src/EGFR/ERK signaling is via Sp1 binding sites to stimulate p21WAF1/CIP1 expression in human epidermoid carcinoma A431 cells. Cell Signal, 18(2):244-255, 2006.
48. Liao W-T, Chang K-L, Yu C-L, Chen G-S, Chang LW and Yu H-S. Arsenic induces human keratinocyte apoptosis by the FAS/FAS ligand pathway, which correlates with alterations in nuclear factor-kappa B and activator protein-1 activity. J Invest Dermatol, 122(1):125-129, 2004.
49. Yamasaki K, Toriu N, Hanakawa Y, Shirakata Y, Sayama K, Takayanagi A, Ohtsubo M, Gamou S, Shimizu N, Fujii M, Miyazono K and Hashimoto K. Keratinocyte Growth Inhibition by High-Dose Epidermal Growth Factor Is Mediated by Transforming Growth Factor [beta] Autoinduction: A Negative Feedback Mechanism for Keratinocyte Growth. J Invest Dermatol, 120(6):1030-1037, 2003.
50. Wotton D, Lo RS, Lee S and Massagué J. A Smad Transcriptional Corepressor. Cell, 97(1):29-39, 1999.
51. Schmierer B and Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol, 8(12):970-982, 2007.
52. Galliher AJ and Schiemann WP. Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res, 67(8):3752-3758, 2007.
53. Vigushin DM and Coombes RC. Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs, 13(1):1-13, 2002.
54. Tanabe Y, Sakamoto N, Enomoto N, Kurosaki M, Ueda E, Maekawa S, Yamashiro T, Nakagawa M, Chen C-H, Kanazawa N, Kakinuma S and Watanabe M. Synergistic inhibition of intracellular hepatitis C virus replication by combination of ribavirin and interferon- alpha. J Infect Dis, 189(7):1129-1139, 2004.
55. Tallarida RJ. Drug Synergism: Its Detection and Applications. J Pharmacol Exp Ther, 298(3):865-872, 2001.
56. Chou T-C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol Rev, 58(3):621-681, 2006.
57. Roboz GJ, Dias S, Lam G, Lane WJ, Soignet SL, Jr RPW and Rafii S. Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood, 96(4):1525-1530, 2000.
58. Yu H-S, Liao W-T, Chang K-L, Yu C-L and Chen G-S. Arsenic Induces Tumor Necrosis Factor alpha Release and Tumor Necrosis Factor Receptor 1 Signaling in T Helper Cell Apoptosis. J Invest Dermatol, 119(4):812-819, 2002.
59. Lau ATY, Li M, Xie R, He Q-Y and Chiu J-F. Opposed arsenite-induced signaling pathways promote cell proliferation or apoptosis in cultured lung cells. Carcinogenesis, 25(1):21-28, 2004.
60. He X-Q, Chen R, Yang P, Li A-P, Zhou J-W and Liu Q-Z. Biphasic effect of arsenite on cell proliferation and apoptosis is associated with the activation of JNK and ERK1/2 in human embryo lung fibroblast cells. Toxicol Appl Pharmacol, 220(1):18-24, 2007.
61. Yang P, He X-Q, Peng L, Li A-P, Wang X-R, Zhou J-W and Liu Q-Z. The Role of Oxidative Stress in Hormesis Induced by Sodium Arsenite in Human Embryo Lung Fibroblast (HELF) Cellular Proliferation Model. J Toxicol Environ Health A, 70(11):976 - 983, 2007.
62. Calabrese EJ, Baldwin LA and Holland CD. Hormesis: A Highly Generalizable and Reproducible Phenomenon With Important Implications for Risk Assessment. Risk Anal, 19(2):261-281, 1999.
63. Calabrese EJ. Cancer Biology and Hormesis: Human Tumor Cell Lines Commonly Display Hormetic (Biphasic) Dose Responses. Crit Rev Toxicol, 35(6):463-582, 2005.
64. Kawamoto T, Sato JD, Le A, Polikoff J, Sato GH and Mendelsohn J. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci U S A, 80(5):1337-1341, 1983.
65. Itin PH, Pittelkow MR and Kumar R. Effects of vitamin D metabolites on proliferation and differentiation of cultured human epidermal keratinocytes grown in serum-free or defined culture medium. Endocrinology, 135(5):1793-1798, 1994.
66. Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P and Rosen BP. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A, 99(9):6053-6058, 2002.
67. Lee T-C, Ho I-C, Lu W-J and Huang J-d. Enhanced Expression of Multidrug resistance-associated Protein 2 and Reduced Expression of Aquaglyceroporin 3 in an Arsenic-resistant Human Cell Line. J Biol Chem, 281(27):18401-18407, 2006.
68. Yang PC, Luh KT, Wu R and Wu CW. Characterization of the mucin differentiation in human lung adenocarcinoma cell lines. Am J Respir Cell Mol Biol, 7(2):161-71, 1992.
69. Chu Y-W, Yang P-C, Yang S-C, Shyu Y-C, Hendrix MJC, Wu R and Wu C-W. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 17(3):353-360, 1997.
70. Miao Z-F, Chang EE, Tsai F-Y, Yeh S-C, Wu C-F, Wu K-Y, Wang C-J and Tsou T-C. Increased aquaglyceroporin 9 expression disrupts arsenic resistance in human lung cancer cells. Toxicology in Vitro, 23(2):209-216, 2009.
71. Drobna Z, Xing W, Thomas DJ and Styblo M. shRNA Silencing of AS3MT Expression Minimizes Arsenic Methylation Capacity of HepG2 Cells. Chem Res Toxicol, 19(7):894-898, 2006.
72. Gebel TW, Leister M, Schumann W and Hirsch-Ernst K. Low-level self-tolerance to arsenite in human HepG2 cells is associated with a depressed induction of micronuclei. Mutat Res, 514(1-2):245-255, 2002.
73. Gebel TW. Unanswered questions in arsenic toxicology. J Environ Pathol Toxicol Oncol, 20(4):299-309, 2001.
74. Oketani M, Kohara K, Tuvdendorj D, Ishitsuka K, Komorizono Y, Ishibashi K and Arima T. Inhibition by arsenic trioxide of human hepatoma cell growth. Cancer Lett, 183(2):147-153, 2002.
75. Lin Y-C, Lin J-H, Chou C-W, Chang Y-F, Yeh S-H and Chen C-C. Statins Increase p21 through Inhibition of Histone Deacetylase Activity and Release of Promoter-Associated HDAC1/2. Cancer Res, 68(7):2375-2383, 2008.
76. Martínez-Iglesias O, Ruiz-Llorente L, Sánchez-Martínez R, García L, Zambrano A and Aranda A. Histone deacetylase inhibitors: mechanism of action and therapeutic use in cancer. Clin Transl Oncol, 10(7):395-398, 2008.
77. Ocker M and Schneider-Stock R. Histone deacetylase inhibitors: Signalling towards p21cip1/waf1. Int J Biochem Cell Biol, 39(7-8):1367-1374, 2007.
78. Li H and Wu X. Histone deacetylase inhibitor, Trichostatin A, activates p21WAF1/CIP1 expression through downregulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun, 324(2):860-7, 2004.
79. Hung J-J, Wang Y-T and Chang W-C. Sp1 Deacetylation Induced by Phorbol Ester Recruits p300 To Activate 12(S)-Lipoxygenase Gene Transcription. Mol Cell Biol, 26(5):1770-1785, 2006.
80. Huang W, Zhao S, Ammanamanchi S, Brattain M, Venkatasubbarao K and Freeman JW. Trichostatin A induces transforming growth factor beta type II receptor promoter activity and acetylation of Sp1 by recruitment of PCAF/p300 to a Sp1.NF-Y complex. J Biol Chem, 280(11):10047-10054, 2005.
81. Ryu H, Lee J, Olofsson BA, Mwidau A, Deodoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ and Ratan RR. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci U S A, 100(7):4281-4286, 2003.
82. Ikeda SM, Maeshiro KM, Ryu SM, Ogata KM, Yasunami YM, Nakayama YM and Hamada YM. A novel combination therapy with arsenic trioxide and parthenolide against pancreatic cancer cells. Pancreas, 38(4):e114-23, 2009.
83. Chen G, Wang Y, Huang H, Lin F, Wu D, Sun A, Chang H and Feng Y. Combination of DNA methylation inhibitor 5-azacytidine and arsenic trioxide has synergistic activity in myeloma. Eur J Haematol, 82(3):176-183, 2009.
84. Wetzler M, Earp JC, Brady MT, Keng MK and Jusko WJ. Synergism between Arsenic Trioxide and Heat Shock Protein 90 Inhibitors on Signal Transducer and Activator of Transcription Protein 3 Activity--Pharmacodynamic Drug-Drug Interaction Modeling. Clin Cancer Res, 13(7):2261-2270, 2007.
85. Jin H-O, Seo S-K, Woo S-H, Lee H-C, Kim E-S, Yoo D-H, Lee S-J, An S, Choe T-B, Kim J-I, Hong S-I, Rhee C-H and Park I-C. A combination of sulindac and arsenic trioxide synergistically induces apoptosis in human lung cancer H1299 cells via c-Jun NH2-terminal kinase-dependent Bcl-xL phosphorylation. Lung Cancer, 61(3):317-327, 2008.
86. Tanaka-Kagawa T, Hanioka N, Yoshida H, Jinno H and Ando M. Arsenite and arsenate activate extracellular signal-regulated kinases 1/2 by an epidermal growth factor receptor-mediated pathway in normal human keratinocytes. Br J Dermatol, 149(6):1116-1127, 2003.
87. Cooper KL, Myers TA, Rosenberg M, Chavez M and Hudson LG. Roles of mitogen activated protein kinases and EGF receptor in arsenite-stimulated matrix metalloproteinase-9 production. Toxicol Appl Pharmacol, 200(3):177-185, 2004.
88. Sharrocks AD. Cell Cycle: Sustained ERK Signalling Represses the Inhibitors. Curr Biol, 16(14):R540-R542, 2006.
89. Ravid T, Heidinger JM, Gee P, Khan EM and Goldkorn T. c-Cbl-mediated Ubiquitinylation Is Required for Epidermal Growth Factor Receptor Exit from the Early Endosomes. J Biol Chem, 279(35):37153-37162, 2004.
90. RavidDagger T, Sweeney C, GeeDagger P, III KLC and Goldkorn T. Epidermal Growth Factor Receptor Activation under Oxidative Stress Fails to Promote c-Cbl Mediated Down-regulation. J Biol Chem, 277(34):31214-31219, 2002.
91. Patterson TJ and Rice RH. Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential. Toxicol Appl Pharmacol, 221(1):119-128, 2007.
92. Yoon J and Deisboeck TS. Investigating Differential Dynamics of the MAPK Signaling Cascade Using a Multi-Parametric Global Sensitivity Analysis. PLoS One, 4(2):e4560, 2009.
93. Sonegawa H, Nukui T, Li D-W, Takaishi M, Sakaguchi M and Huh N-h. Involvement of deterioration in S100C/A11-mediated pathway in resistance of human squamous cancer cell lines to TGFβ-induced growth suppression. J Mol Med, 85(7):753-762, 2007.
94. Pardali K, Kowanetz M, Heldin C-H and Moustakas A. Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). J Cell Physiol, 204(1):260-72, 2005.
95. Pardali K, Kurisaki A, Morén A, Dijke Pt, Kardassis D and Moustakas A. Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem, 275(38):29244-56, 2000.
96. Doi H, Shibata M-A, Kiyokane K and Otsuki Y. Downregulation of TGF-beta isoforms and their receptors contributes to keratinocyte hyperproliferation in psoriasis vulgaris. J Dermatol Sci, 33(1):7-16, 2003.
97. Freedberg IM, Tomic-Canic M, Komine M and Blumenberg M. Keratins and the Keratinocyte Activation Cycle. J Invest Dermatol, 116(5):633-640, 2001.
98. Tse W-P, Che C-T, Liu K and Lin Z-X. Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J Ethnopharmacol, 108(1):133-141, 2006.