| 研究生: |
楊坤和 Yang, Kun-He |
|---|---|
| 論文名稱: |
雙流體內混式微霧化器之霧化機制及特性研究 Atomization Mechanisms and Performance of Twin-Fluid Micro Atomizers with Internal Mixing |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng 王覺寬 Wang, Muh-Rong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 363 |
| 中文關鍵詞: | 霧化機制 、雙流體 、吸入器 、預膜聚焦 |
| 外文關鍵詞: | Inhaler, Atomization mechanism, Prefilming sheet, Twin-fluid, Flow focusing |
| 相關次數: | 點閱:76 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以MEMS製程製作雙流體氣助式及內衝式微型霧化器,探討其霧化機制、霧化特性及應用在吸入式給藥之可行性。實驗均在室溫下進行,微噴流之破裂機制是以顯微鏡結合高速攝影之照相技術來觀察檢視。此研究中設計之微霧化器分別是微氣助式AMA霧化器及歧管內衝式MMA霧化器,AMA霧化器構造在混合腔正上方有一液體微流道供應液體,左右各有一氣體流道,此氣助式(AMA)微霧化器之噴口水力直徑為46、78及80µm。而MMA霧化器則含有一液體分配器之霧化器,其液體供應經由分配器之歧管將兩股液體注入兩氣體流道,並由氣體運載入混合腔中衝擊,再經微噴口噴出形成噴霧,其噴口水力直徑為44及75µm。此兩型微霧化器之液體微流道水力直徑為30~50µm出口寬/高比(Aspect Ratio)為9 ~ 23。
為了探討液體性質、液體流率及霧化氣體壓力對微液束霧化之噴霧粒徑的影響。此研究應用水、酒精、生理食鹽水(0.45%)及甘油水溶液等為工作流體,使用之液體流率QL= 0.1~1mL/min,其操作壓力從0至8bar,霧化氣體(壓縮空氣)之流率Qg< 1L/min,其操作壓力在0.1至6bar間。而噴霧粒徑是以光學繞射原理之非侵入式Malvern INSITEC RT-Sizer粒徑分析儀來量測,噴霧整個流場之噴霧平均速度是使用IDT/PIV粒子影像速度儀來量測。噴霧演變過程之流動觀察亦使用IDT的高速攝影機系統來執行。結果顯示,基於霧化氣體壓力、液體噴射壓力及韋伯數之變化,AMA型微霧化器在靠噴口處近場之液體破裂機制及方式可分為層流液束破裂、空氣動力破裂方式及紊流模態之霧化機制。實驗觀察亦發現,控制微霧化器之液氣體積流率比(QL/Qg),可在腔體內產生流體聚焦機制,並產生單液滴噴流及兩束分岔流之液滴噴流,其中分岔液滴噴流之擴張角度隨QL/Qg 之增大而減小,微液滴粒徑(SMD)及微液噴流之破裂長度均隨QL/Qg 之增大而增加。
在霧化性能方面,出口水力直徑為46µm之AMA微霧化器其噴霧粒徑隨氣液質量比(GLR)增大至2.9時,其平均粒徑由14.1µm降至5.3µm。當水力直徑為78µm,被霧化之流體是水,液流率小於2mL/min時,霧化壓力為3~5bar條件下,其產生之噴霧平均粒徑可達徑5~6µm。結果也顯示出口水力直徑為44µm之內衝式(MMA)微型霧化器在液體流率為0.3〜1.0mL/min及氣液質量比(GLR)為0.13至0.38時,其噴霧平均粒徑可達3µm至6µm。在噴霧之速度特性上,咸以粒子影像速度儀來量測,其噴霧速度流場為噴流結構型態且軸向速度具有相似性,其平均軸向速度在噴口下游Z=20mm處低於10m/s,至下游Z=100mm時由於空氣阻力及慣性力變小,速度降至1m/s。
最後,為了評估將AMA微霧化器應用至吸入式給藥之可行性,此研究將氣助式(AMA)微霧化器與圓球擋體及吹口組成吸入器,稱為AMA氣霧系統,在吹口出口測量水霧之粒徑。結果顯示,在霧化氣體壓力大於2bar,液流率0.8~2mL/min下,此氣霧系統測得之SMD可降至2.3μm,DV50同時降至5µm以下,其適於呼吸治療噴霧粒子(< 5µm)的體積百分比可達到68%,此種氣助式(AMA)微霧化器與圓球擋體及90度彎頭吹口組合之氣霧系統為最佳組合,經比較適於呼吸治療之噴霧粒子的體積百分比時,此AMA氣霧系統均優於市售之氣動式霧化器。研究中亦以美國藥典之喉部模型(USP2000 throat)作體外模擬實驗。結果發現,AMA微霧化器加90度彎頭吹口組合之氣霧系統通過喉部模型至測試區為最佳組合,此種組合之噴霧粒子需經過兩處彎頭,可充分攔截大粒子。當液流率1mL/min、霧化氣壓力2bar及18L/min之吸氣下,測試區之氣霧粒子小於5µm之百分比可達到50%。由此研究可得到一結論,預膜型微霧化器(AMA及MMA)之設計可提昇霧化性能,佐以擋體及吹口,性能可達醫藥用吸入器之需求,此裝置可用於治療氣喘、慢性阻塞性肺病、囊胞性纖維症及呼吸照護等。
This dissertation investigates the atomization mechanisms and performance of twin-fluid micro atomizers. It produces micron-sized droplets sprays for the applications of inhaled drug delivery. The micro-atomizers were fabricated via MEMS bulk machining processes. The breakup mechanisms of the micro jet were examined experimentally using photographic technique. All tests were performed at room temperature and atmospheric pressure. The two types of the twin-fluid micro-atomizers were designed in the research program. One is the air-assist type micro-atomizer (AMA type) with three micro channels for the liquid and gas flows. The other one is the manifold type micro-atomizer (MMA type) with four micro channels. The orifice hydraulic diameters of the micro atomizers are less than 100µm. The aspect ratios of orifice are ranged from 9 to 23 for the AMA and MMA atomizers. This dissertation also describes the effects of liquid properties, liquid flow rate, and atomizing air pressure on drop sizes produced by disintegration of the micro-jet. The liquids employed in this study are water, ethyl alcohol, 0.45%NaCl solution, and a glycerin-water mixture. Liquid injection pressure is from 0 to 8bar and liquid flow rate ranging from 0.1 to 4mL/min is supplied with syringe pump. Atomizing gas pressure is varied from 1 to 6bar with volume flow rate less than 1L/min. A nonintrusive Malvern INSITEC RT-Sizer was used to measure drop size distribution of the spray and IDT/PIV system was used to measure the spray velocity. Flow visualization technique was also performed by the IDT high speed camera system. Observations of the breakup mechanisms in the near-field of the atomizer show that the breakup regimes can be described by the mechanisms involving the laminar jet disintegration, aerodynamic disintegration and turbulent mode based on the atomizing gas pressure, the injection pressure and Weber number. A new phenomenon of flow branching of the liquid jet emanating from the atomizer was also observed. Moreover, the ratio of liquid to gas flow rate determines the spreading angle and droplets size of the two-pronged liquid jets. It is also found that the flow focusing mechanism results in the mono-dispersed droplets stream.
Results also show that for AMA with hydraulic diameter 46µm the mean droplet size reduces from 14.1µm to 5.3µm as gas-to-liquid ratio (GLR) ranging from 1.3 to 2.9 and the mean droplet size (SMD) ranging 5 to 6µm can also be achieved by AMA with hydraulic diameter of 78µm under liquid flow rate less than 2mL/min and gas pressure ranging from 3 bar to 5bar. Moreover, for MMA with hydraulic diameter of 44µm the mean droplet size is further reduced from 3µm to 6µm with lower gas-to-liquid ratio ranging from 0.13 to 0.38 under the same pressure range. The axial velocity profile of the micro spray measured by using PIV instrument is essentially a jet flow structure. The mean axial velocity of spray droplets is below10m/s at Z=20mm downstream from the atomizer and reduced to 1m/s downstream Z=100mm. In order to evaluate the feasibility of drug delivery to lung with AMA, the mouthpiece, ball baffle, and micro-atomizer were connected in series and drop size of water spray was measured near the exit of mouthpiece. Results indicate that the finer micro spray with Sauter mean diameter (SMD) of 2.3µm under the test conditions of the air pressure greater than 2bar and the liquid flow rate ranging from 0.8 to 2mL/min can be achieved as the ball baffle and mouthpiece was installed. Dv50 less than 5µm are also obtained and the respirable percentage (< 5µm) of 68% can be achieved by the AMA nebulizing system with bending mouthpiece and baffle.
For in vitro experiments with the mouthpiece and the USP2000 throat model, the AMA nebulizing system with bending mouthpiece is also the best choice because the spray jet travels two bends to measurement region. The respirable percentage of 50% for aerosol measured in measurement region of USP can be achieved under gas pressure of 2bar, suction air of 18L/min, and QL=1mL/min. It turns out that the design of prefilming type micro atomizers can enhance the atomization performance in this research. As installing baffle and mouthpiece, the droplets size and slow velocity is further suitable for the application of drug inhalation to treat asthma, COPD, CF, and respiratory care.
[1] Lefebvre, A. H., 1989, Atomization and Sprays, Hemisphere Publishing Corporation, New York.
[2] Bayvel, L. P., Orzechowski, Z., 1993, Liquid Atomization, Taylor & Francis, Washington, D C..
[3] Hickey, A. J., 1996, Inhalation Aerosols: Physical and Biological Basis for Therapy, Marcel Dekker Inc., New York.
[4] Wiliam, C. H., 1998, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, Inc., New York.
[5] Zierenberg, B., 1999, “Optimizing the in Vitro Performance of Respimat,” Journal of Aerosol Medicine, 12, Supplement 1, pp.S-19-S-24.
[6] Hofmann, W., 1996, “Lung Morphometry and Particle Transport and Deposition Overview of Existing Models Aerosol Inhalation: Recent Research Frontiers,” ed. Marijnissen, J. C. M. (Dordrecht: Kluwer), pp. 91–102.
[7] Bisgard, H., O’Callaghan, C., and Smaldone, G. C., 2002, “Drug Delivery to the lung,” chapter 1, Marcel Dekker, Inc., New York, pp. 1-18.
[8] Grossman, J., 1994, “The Evolution of Inhaler Technology,” Journal of Asthma, 31(1), pp. 55-64.
[9] Dessanges, J. F., 2001, “A history of nebulization,” J. Aerosol Med., 14, pp. 65–71.
[10] Barry, P. W., 2002, “The future of nebulization,” Respiratory Care, 47, pp. 1459–1469.
[11] Lange, C. F., and Finlay, W. H., 2006, “Liquid Atomizing: Nebulizing and Other Methods of Producing Aerosols,” .Journal of Aerosol Medicine, 19(1), pp. 28–35.
[12] Montaser, A., 1998, “Inductively Coupled Plasma Mass Spectrometry,” Wiley-VCH, New York.
[13] Sharp, B. L., 1988, “Pneumatic Nebulisers and Spray Chambers for Inductively Coupled Plasma Spectrometry-A Review Part I. Nebulisers,” J. Anal. At. Spectrom., 3, pp. 613-652.
[14] Almagro, B., Ganan-Calvo, A. M., Hidalgoa, M., and Canals A., 2006, “Flow Focusing Pneumatic Nebulizer in Comparison with Several Micronebulizers in Inductively Coupled Plasma atomic Emission Spectrometry,” J. Anal. At. Spectrom., 21, pp. 770–777.
[15] Canals, A., Hernandis, V., and Browner, R. F., 1990, “Experimental Evaluation of the Nukiyama-Tanasawa equation for Pneumatic Nebulizers Used in Plasma Atomic Spectrometry,” J. Anal. At. Spectrom., 5, pp. 61–66.
[16] Nixon, D. E., 1993, “Comparison of Two Meinchard Nebulizers Operating at the Same Argon Flow but Different Pressure,” Spectrochim. Acta, Part B, 48, pp.447–459.
[17] Gañán-Calvo, A. M., 1998, “Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams,” Phys. Rev. Lett., 80(2), pp. 285-288.
[18] Gañán-Calvo, A. M., and Barrero A., 1999, “A Novel Pneumatic Technique to Generate Steady Capillary Microjets,” J. Aerosol Sci., 30(1), pp. 117-125.
[19] Groom, S., Schaldach, G., Ulmer, Walzel, M. P., and Berndt, H., 2005, “Adaptation of a new pneumatic nebulizer for sample introduction in ICP spectrometry,” J. Anal. At. Spectrom., 20, pp. 169–175.
[20] Stiller, S. W., and Johnston, M. V., 1987, “Sheath Flow Focusing in Supersonic Jet Spectroscopy,” Applied Spectroscopy, 41(8), pp. 1351-1357.
[21] Lefebvre, A. H., 1989, “Properties of Sprays,” Part. Part. Syst. Charact., 6, pp. 176-186.
[22] Liu, H., 2000, Science and Engineering of Droplets: Fundationals and Applications, William Andrew Publishing, Norwish, NewYork.
[23] Peregrine, D. H., Shoker, G., and Symon, A., 1990, “The bifurcation of liquid bridges,” Journal of Fluid Mechanics, 212, pp. 25-39.
[24] Rothert, A., Richter, R. and Rehberg, I., 2003, “Formation of a drop: viscosity dependence of three flow regimes,” New Journal of Physics, 5, pp. 59.1–59.13.
[25] Shaw, R., 1984, “The Dripping Faucet as a Model Chaotic System,” Aerial Press, Santa Cruz, CA..
[26] Clanet, C. and Lasheras, J. C., 1999, “Transition from dripping to jetting “, Journal of Fluid Mechanics,” 383, pp. 307-326.
[27] Ambravaneswaran, B., Subramani, H. J., Phillips, S. D., and Basaran, O. A., 2000, “Theoretical Analysis of a Dripping Faucet,” Phys. Rev. Lett., 85(25), pp. 5332-5335.
[28] Ambravaneswaran, B., Subramani, H. J., Phillips, S. D., and Basaran, O. A., 2004, “Dripping-Jetting Transitions in a Dripping Faucet,” Physical Review Letters, 93(3), pp. 034501-1-034501-4.
[29] Le, H. P., 1998, “Progress and Trends in Ink Jet Printing Technology,” J. Imaging Sci. Technol., 42, pp. 49-62.
[30] Service, R. F., 1998, “Microchip Arrays Put DNA on the Spot,” Science, 282, pp. 396-399.
[31] Bocanegra, R., Sampedro, J. L., Gañán-Calvo, A. M., and Marquez, M., 2005, “Monodisperse structured multi-vesicle microencapsulation using flow-focusing and controlled disturbance,” Journal of Microencapsulation; 22(7), pp. 745–759.
[32] Barnaby P. O. and Theodore A. S., 2006, “An Experimental Investigation into Liquid Jetting Modes and Break-up Mechanisms Conducted in a New Reduced Gravity Facility,” Bremen Microgravity sci. technol., XVIII-3/4, pp. 57-61.
[33] Utada, A. S., Fernandez-Nieves, A., Stone, H. A., and Weitz, D. A., 2007, “Dripping to Jetting Transitions in Coflowing Liquid Streams,” Phys. Rev. Lett , PRL 99, pp. 094502-1- 094502-4.
[34] Anna, S. L., Bontoux, N., and Stone, H. A., 2003, “Formation of Dispersions Using Flow Focusing in Microchannels,” Appl. Phys. Lett,. 82, pp. 364-366.
[35] Gañán-Calvo, A. M. and Gordillo, J. M., 2001, “Perfectly Monodisperse Microbubbling by Capillary Flow Focusing,” Phys. Rev. Lett., 87, pp. 274501-1-274501-4.
[36] Basaran, O. A., 2002, “Small-Scale Free Surface Flows with Breakup: Drop Formation and Emerging Applications,” AIChE J., 48, pp. 1842-1848.
[37] Plateau, J., 1873, “Statique Experimentale et Teorique des Liquides Soumis aux Seules Forces Moleculaires,” Cited by Lord Rayleigh, Theory of Sound, 2, Dover Publications, New York.
[38] Rayleigh, L., 1878, “On the Instability of Jets,” Proc. London Math. Soc., 10, pp. 4-13.
[39] Weber, C., 1931, “Disintegration of Liquid Jets,” Z. Angew, Math. Mech. , 11(2), pp. 136-159.
[40] Haenlein, A., 1932, “Disintegration of a Liquid Jet,” NACA, TN 659, pp. 56-60.
[41] Ohnesorge, W., 1936, “Formation of Drops by Nozzles and the Breakup of Liquid Jets,” Z. Angew. Math., 16(2), pp. 136-59.
[42] Reitz, R. D. and Bracco, F. V., 1982, “Mechanism of Atomization of a Liquid Jet,” Physics of Fluids, 25(10), pp. 1730-1742.
[43] Reitz, R. D. and Bracco F. V., 1986, Mechanisms of Breakup of Round Liquid Jets Gas-Liquid Flow: The Encyclopedia of Fluid Mechanics, 3, ed Cheremisinoff, N, Houston: Gulf Pub. Co. Book Division, pp 233-249.
[44] Lin, S. P. and Reitz, R D., 1998, “Drop and Spray Formation from a Liquid Jet,” Annu. Rev. Fluid Mech., 30, pp. 85-105.
[45] Faeth, G. M., 1990, “Structure and Atomization Properties of Dense Turbulent Sprays,” Twenty-Third Symposium (International) on Combustion, 23, pp. 1345-1352.
[46] Leong, M. Y., McDonell, V. G., and Samuelsen, G. S., 2000, “Mixing of an Airblast-Atomized Fuel Spray Injected Into a Crossflow of Air,” NASA/CR—2000-210467, UCI–ARTR–00–05.
[47] Sallam, K.A., Dai, Z., and Faeth, G. M., 2002, “Liquid Breakup at the Surface of Turbulent Round Liquid Jets in Still Gases,” International Journal of Multiphase Flow, 28, pp. 427–449.
[48] Arai, 1995, “Effect of Internal Flow Condition Inside Injector Nozzles on Jet Breakup Process,” In Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena., Ed. Kuo K. K., 1, pp. 173-184.
[49] Zhu, Y., Wan, Y. X., Haung, Y., and Peng X. K., 2007, “Study on the Breakup Length of Free Round Liquid Jets,” Journal of Aerospace Power, 8, abstract.
[50] Castlmen Jr., R. A., 1930, “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, 6, pp. 369-376.
[51] Nukiyama, G. E. and Tanasawa, Y., 1940, “An Experiment of the atomization of Liquid-The Atomization Pattern of Liquid by means of an Air Stream,” Trans. Soc. Mech. Eng. Japan, parts 5 , pp. 11-7-11-15.
[52] Hoyt, J.W. and Taylor, J. J., 1977, “Waves on Water Jets,” Journal of Fluid Mechanics, 83, pp. 119-127.
[53] Eroglu, H. and Chigier N., 1991, “Wave Chacteristics of Liquid Jets from Airblast Coaxial Atomizers,” Atomization and Sprays, 1, pp. 349-366.
[54] Farago, Z. and Chigier, N., 1992, “Morphological Classification of Disintegration of Round Liquid Jets in a Coaxial Air Stream,” Atomization and Spray, 2(2), pp. 137-154.
[55] Chigier, N. and Reitz, R.D., 1995, “Regimes of Jet Breakup and Breakup Mechanisms,” In Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena. Ed. Kuo, K. K., 1, pp. 109-135.
[56] Lasheras, J. C., and Hopfinger, E. J., 2000, “Liquid Jet Instability and Atomization in a Coaxial Gas Stream,” Ann. Rev. Fluid Mech., 32, pp. 275-308.
[57] Shavit, U., 2001, “Gas-Liquid Interaction in the Liquid Breakup Region of Twin-Fluid Atomizatiom,” Experiments in Fluids, 31, pp. 550-557.
[58] Varga, C. M., Lasheras, J. C., and Hopfinger, E. J., 2003, “Initial Breakup of a Small-Diameter Liquid Jet by a High-Speed Gas Stream,” Journal of Fluid Mechanics, 497, pp. 405-434.
[59] Dombrowski, N. and Johns, W. R., 1963, “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chemical Engineering Science, 18, pp. 203-214.
[60] Squire, H. B., 1953, “Investigation of the Instability of a Moving Liquid Film,” British Journal of Applied Physics, 4, pp. 167-169.
[61] Fraser, R. P., and Eisenklam, P., 1953, “Research into the Performance of Atomizers for. Liquids,” Imp. Coll. Chem. Eng. Soc. J., 7, pp. 52-68.
[62] Dombrowski, N., and Fraser, R. P., 1954, “A Photographic Investigation Into The Disintegration of Liquid Sheets,” Philosophical Transactions of the Royal Society of London A, 247, pp. 101-130.
[63] Mansour, A., and Chigier, N., 1990, “Disintegration of Liquid Sheets,” Physics of Fluids A, Vol. 2, pp. 706-719.
[64] Mansour, A., and Chigier, N., 1991, “Dynamic Behavior of Liquid Sheets,” Physics of Fluids A, 3, pp. 2971-2980.
[65] Stapper, B. E., Sowa, W. A., and Samuelsen, G. S., 1992, “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-Dimensional Liquid Sheet,” Journal of Engineering for Gas Turbines and Power, 114, pp. 39-45.
[66] Lozano, A, Barreras, F, Hauke, G, and Dopazo, C, 2001, “Longitudinal Instabilities in an Air-Blasted Liquid Sheet,” J Fluid Mech, 437, pp. 143–173.
[67] Adzic, M., Carvalho, I. S. and Heitor, M.V., 2001, “Visualisation of the Disintegration of an Annular Liquid Sheet in a Coaxial Airblast Injector at Low Atomising Air Velocities,” Optical Diagnostics in Engineering, 5(1), pp. 27-38.
[68] Park, J., Huh, K. Y., Li, X., and Renksizbulut, M., 2004, “Experimental Investigation on Cellular Breakup of a Planar Liquid Sheet from an Air-Blast Nozzle,” Physics of fluids, 16(3), pp.625-632.
[69] Wahono, S., Honnery, D., Soria, J., and Ghojel, J., 2008, “High-Speed Visualisation of Primary Break-Up of an Annular Liquid Sheet,” Exp Fluids, 44, pp. 451–459.
[70] Newitt, D. M., Dombrowski, N., and Knelman, F. H., 1954, “Liquid Entrainment 1. The Mechanism of Drop Formation from Gas or Vapour Bubbles,” Trans. Inst. Chem. Engrs, 32, pp. 244-252.
[71] Whitlow, J. D., and Lefebvre, A. H., 1993, “Effervescent Atomizer Operation and Spray Characteristics,” Atomization and Sprays, 3, pp. 137-156.
[72] Lund, M. T., Sojka, P. E., Lefebvre, A. H., and Gosselin, P. G., 1993, “Effervescent Atomization at Low Mass Flow Rates. Part 1: The Influence of Surface Tension,” Atomization and Sprays, 3, pp. 77-89.
[73] Sovani, S. D., Sojka, P. E., and Lefebvre, A. H., 2001, “Effervescent Atomization,” Progress in Energy and Combustion Science, 27, pp. 483-521.
[74] Snyder, H.E., 1998, “Direct Droplet Production from a Liquid Film: a New Gas-Assisted Atomization Mechanism,” J. Fluid Mech., 375, pp. 363-381.
[75] Lane, W. R., 1951, “Shatter of Droplets in Stream of Air,” Ind. Eng. Chem., 43(6), pp. 1312-1317.
[76] Pilch, M., and Erdman, C. A., 1987, “Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration induced Breakup of a Liquid Drop,” Int. J. Multiphase Flow, 13(6), pp. 741-757.
[77] Hsiang, L. P., and Faeth, G. M., 1992, “Near-Limit Drop Deformation and Secondary Breakup,” Int. J. Multiphase Flow, 18(5), pp. 635-652.
[78] Liu, A. B., and Reitz, R. D., 1993, “Mechanism of Air Assisted Liquid Atomization,” Atomization and Spray, 3, pp. 55-75.
[79] Liu, Z., and Reitz, R. D., 1997, “An Analysis of the Distortion and Breakup Mechanisms of High Speed Liquid Drops,” Int. J. Multiphase Flow, 23(4), pp. 631-650.
[80] Lee, C. S., and Reitz, R. D., 2001, “Effect of Liquid Properties on the Breakup Mechanism of High-Speed Liquid Drops,” Atomization and Sprays, 11, pp. 1-19.
[81] Dai, Z., and Feath, G. M., 2001, “Temporal Properties of Secondary Drop Breakup in the Multimode Breakup Regime,” Int. J. Multiphase Flow, 27, pp. 217-236.
[82] Ashgriz, N., and Poo, J. Y., 1990, “Coalescence and separation in binary collisions of liquid drop,” J. Fluid Mech., 221, pp. 183-204.
[83] Qian, J., and Law, C. K., 1997, “Regims of Coalescence and Separation in Droplet Collision,” J. Fluid Mech., 331, pp. 559-80.
[84] O’Rourke, P. J., and Bracco, F. V., 1980, “Modeling of Drop Interactions in Thick Sprays and a Comparison with Experiments,” Stratified Charge Automotive Engineering Conference, the Institute of Mechanical Engineering, London.
[85] Asheim, J. P., Kirwan, J. E., and Peters, J. E., 1987, “Modeling of a hollow-cone liquid spray including droplet collisions,” AIAA-87-0135.
[86] Hong, C. H., 1991, “Dynamic Characteristics of the Continuous and Dispersed Phase in a Hollow Cone Spray Jet,” Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C.
[87] Lai, W. H., Yang, K. H., Hong, C. H., and Wang, M. R., 1996, “Droplet Transport in Simplex and Air-Assisted Sprays,” Atomization and Sprays, 6, pp. 21-49.
[88] Lai, W. H., 1995, “Droplet Transport and Turbulence Modulation in Developing Process of the Spray Flows,” Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C.
[89] Nguyen, Q. V., Rangel, R. H., and Rankin, D. D., 1991, “Measurement and Prediction of Trajectories and Collision of Droplets,” Int. J. Multiphase Flow, 10(2), pp. 159-177.
[90] Martin-Banderas, L., Flores-Mosquera, M., Riesco-Chueca, P., Rodriguez-Gil, A., Cebolla, A., Chavez, S., and Ganan-Calvo, A. M., 2005, “Flow Focusing: A Versatile Technology to Produce Size-Controlled and Specific-Morphology Microparticles,” Small, 1(7), pp. 688–692.
[91] Ganan-Calvo, A. M., Lopez-Herrera, J. M., and Riesco-Chueca, P., 2006, “Combination of Electrospray and Flow Focusing,” J. Fluid Mech., 566, pp. 421–445.
[92] Stobik, M., 2000, “Nanoval Atomization - a Special Process for Special Products,” Liquid Metal Atomization Fundamentals and Practice, Edit by Cooper, K. P., Anderson, I. E., Ridder, S. D., and Biancaniello, the Minerals, Metal & Meterial Society, Warrendale, Pennsylvania, pp.107-113
[93] Jeong, W., Kim, J., Kim, S., Lee, S., Mensing, G. and Beebe, D. J., 2004, “Hydrodynamic Microfabrication via ‘‘on the Fly’’ Photopolymerization of Microscale Fibers and Tubes, Lab Chip”, 4, pp. 576–580.
[94] Lewandowski, Z., Ziabicki, A., and Jarecki, L., 2007, “The Nonwovens Formation in the Melt-blown Process,” Fibres & Textiles in Eastern Europe, 15(5), pp.77-81.
[95] Gañán-Calvo, A. M., 2005, “Enhanced Liquid Atomization: From Flow-Focusing to Flow-Blurring,” Applied Physics Letters, 86, pp. 214101-1-214101-3.
[96] Oh, H. J., Kim, S. H., Baek, J. Y., Seong, G. H., and Lee, S. H., 2006, “Hydrodynamic Micro-encapsulation of Aqueous Fluids and Cells via ‘on the Fly’ Photopolymerization,” J. Micromech. Microeng., 16, 285–291.
[97] Takeuchi, S., Garstecki, P., Weibel, D. B., and Whitesides, G. M., 2005, “An Axisymmetric Flow-Focusing Microfluidic Device,” Adv. Mater., 17(8), pp. 1067-1072.
[98] Garstecki, P., Gitlin, I., DiLuzio, W., and Whitesidesa., G. M., 2004, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett., 85(13), pp. 2649-2651.
[99] Ward, T., Faivre, M., Abkarian, M., and Stone, H. A., 2005, “Microfluidic Flow Focusing: Drop Size and Scaling in Pressure versus Flow-Rate-Driven Pumping,” Electrophoresis, 26, pp. 3716–3724.
[100] Yobas, L., Martens, S., Onga, W. L., and Ranganathan, N., 2006, “High-Performance Flow-focusing Geometry for Spontaneous Generation of Monodispersed Droplets,” Lab Chip, 6, pp. 1073–1079.
[101] Tan, Y. C., Cristini, V., and Lee, A. P., 2006, “Monodispersed Microfluidic Droplet Generation by Shear Focusing Microfluidic Device,” Sensors and Actuators B, 114, pp. 350–356.
[102] Huang, S. H., Tan, W. H., Tseng, F. G., and Takeuchi, S., 2006, “A Monolithically Three-Dimensional Flow-Focusing Device for Formation of Single/Double Emulsions in Closed/Open Microfluidic Systems,” J. Micromech. Microeng., 16, pp. 2336–2344.
[103] Lee, C. H., Hsiung, S. K., and Lee, G. B., 2007, “A tunable Microflow Focusing Device Utilizing Controllable Moving Walls and Its Applications for Formation of Micro-Droplets in Liquids,” J. Micromech. Microeng., 17, pp. 1121–1129.
[104] Luque, A., Perdigones, F. A., Esteve, J., Montserrat, J., Gañán-Calvo, A. M., and Quero, J. M., 2007, “Silicon Microdevice for Emulsion Production Using Three-Dimensional Flow Focusing,” J. Microelectromechanical Systems, 16(5), pp. 1201-1207.
[105] Nukiyama, G. E. and Tanasawa, Y., 1939, “Experiments on the atomization of liquids by means of air streams parts III and IV,” Trans. Soc. Mech. Eng. Japan 5(18) 63–75.
[106] Lorenzetto, G. E. and Lefebvre, A. H., 1977, “Measurements of Drop Size on a Plain-Jet Airblast Atomizer,” AIAA Journal, 15(7), pp. 1006-1010.
[107] Rizkalla, A. A. and Lefebvre, A. H., 1975, “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” Journal of Engineering for Power, pp. 173-179.
[108] Rizk, N. K. and Lefebvre, A. H., 1984, “Spray characteristics of plain-jet Airblast Atomizers,” Transactions of the ASME, Journal of Engineering for Gas Turbine and Power, 106, pp. 634-638.
[109] Lefebvre, A. H., 1992, “Twin-Fluid Atomization: Factors Influencing Mean Drop Size,” Atomization and Sprays, 2(2), pp. 101-119.
[110] Lefebvre, A. H., 1992, “Energy Considerations in Twin-Fluid Atomization," Journal of Engineering for Gas Turbines and Power, 114(1), pp. 89-96.
[111] Wang, M. R., Sheu, M. S., Lai, W. H. and Wang, C. K., 1995, “Atomisation Characteristics of Air-Assist and Air-blast Planar Injectors,” Proceeding of the 12th National Conference on Mechanical Engineering CSME, Chia-Yi, pp. 115-124.
[112] Wang, M. R., Wang, C. K., Sheu, M. S., and Lin, F. C., 1996, “Effects of Atomization Air on Spray in the Air Assist and Air Blast Planar Injector,” The 38th Conference on Aeronautics and Astronautics, Taipei, Taiwan, ROC.
[113] Whitlow, J. D. and Lefebvre, A. H., 1993, “Effervescent Atomizer Operation and Spray Characteristics,” Atomization and Sprays, 1993, 3, pp. 137-155.
[114] Nguyen, D. A. and Rhodes, M. J., 1998, “Producing Fine Drops of Water by Twin-Fluid Atomisation,” Powder Technology, 99, pp. 285-292.
[115] Kufferath, A., Wende, B., and Leuckel, W. 1999, “Influence of Liquid Flow Conditions on Spray Characteristics of Internal-Mixing Twin-Fluid Atomizers,” International Journal of Heat and Fluid Flow, 20, pp. 513-519.
[116] Guo, L. J., Li, G. J., Chen, B., Chen, X. J., Papailiou, D. D., and Panidis, Th., 2002, “Study on Gas-Liquid Two-Phase Spraying Characteristics of Nozzles for the Humidification of Smoke,” Experimental Thermal and Fluid Science, 26, pp. 715-722.
[117] Wang, M. R., Lin, T. C, Lai, T. S., and Tseng, I. R., 2005, “Atomization Performance of an Atomizer with Internal Impingement,” JSME International Journal Series B, 48(4), pp. 858-864.
[118] Harari, R., and Sher, E., 1997, “Optimization of a Plain-Jet Airblast Atomizer,” Atomization and Sprays, 7(1), pp. 97-113.
[119] Harari, R., and Sher, E., 1998, “Bimodal Drop Size Distribution Behavior in Plain-Jet Airblast Atomizer Sprays,” Atomization and Sprays, 8(3), pp. 349-362.
[120] Al-Suleimani, Y., and Yule, A. J., 2002, “An Alternative Spray Production Method for Pressurized Metered Dose Inhaler,” ILASS-Europe 2002, Zaragoza.
[121] Gretzinger, J., and Marshall, JR., W. R., 1961, “Characteristics of Pneumatic Atomization,” AIChE. Journal, 7(2), pp. 312-318.
[122] Singh, A., Mehregany, M., Phillips, S. M., Harvey, R. J., and Benjamin, M., 1998, “Micromachined Silicon Fuel Atomizers for Gas Turbine Engines,” Atomization and Sprays, 8, pp. 405-418.
[123] Rajan, N., Zorman, C. A., Mehregany, DeAnna, M., R., and Harvey, R., 1998, “Performance of 3C-SiC Thin Films as Protective Coatings for Silicon-Micromachined Atomizers,” Thin Solid Films, 315, pp. 170–178.
[124] Rajan, N., Mehregany, M., Zorman, C. A., Stefanescu, S., and Kicher, T. P., 1999, “Fabrication and Testing of Micromachined Silicon Carbide and Nickel Fuel Atomizers for Gas Turbine Engines,” J. Microelectromech. Syst., 8, pp. 251–257.
[125] Yang, J. T., Huang, K. J., and Chen, A. C., 2004, “Microfabrication and Laser Diagnosis of Pressure-Swirl Atomizers,” J. Microelectromech. Syst., 13, pp. 843-850.
[126] Baik, S., Blanchard, J. P., and Corradini, M.L., 2003, “Development of Micro-Diesel Injector Nozzles via MEMS Technology and Effects on Spray Characteristics,” Atomization and Sprays, 13, pp. 443-474.
[127] Snyder, H. E., and Reitz, R.D., 1999, “Development of Micro-Machining Techniques for Air-Assisted Liquid Atomization,” Experimental Thermal and Fluid Science, 20, pp. 11-18.
[128] Lee, H., and Cimab, M. J., 2006, “An Atomization Method Using an Oscillating Needle and a Micro Air Jet,” Chemical Engineering Science, 61, pp. 5919–5923.
[129] Nabity, J., and Daily, J., 2004, “A MEMS Fuel Atomizer for Advanced Engines,” Conference on Micro-Nano-Technologies 1-5 November 2004, Monterey, California, AIAA Paper 2004-6711.
[130] Hickey, A. J., 1992, Pharmaceutical Inhalation Aerosol Technology, Marcel Dekker Inc. New York.
[131] Wissink, J. M. and van Rijn, C. J. M., 2002, “Smart Micromachined Nozzles for Monodisperse Aerosol Generation Using Low Pressure Rayleigh Break-up,” Respiratory Drug Delivery, 8, pp. 203-206.
[132] Dalby, R., Spallek, M., and Voshaar, T., 2004, “A Review of the Development of Respimat® Soft MistTM Inhaler,” International Journal of Pharmaceutics, 283, pp.1–9.
[133] Pan, C. T., Shiea, J and Shen, S. C., 2007, “Fabrication of an Integrated Piezo-Electric Micro-Nebulizer for Biochemical Sample Analysis,” J. Micromech. Microeng., 17, pp. 659–669.
[134] Leu, T. S. and Teng C. H., 2006, “Design, Fabrication and Study of Micro-Electrospray Chip,” Material Science Forum, 505-507, pp.1249-1254.
[135] Zimlich, W. C., Ding, J. Y., Busick, D. R., . Moutvic, R. R, Placke, M. E., Hirst, P. H., Pitcairn, G. R., Malik S., Newman, S. P., Macintyre, F., Miller, P. R., . Shepherd, M. T., and Lukas, T.M., 2000, “The Development of a Novel Electrohydrodynamic Pulmonary Drug Delivery Device,” Respiratory Drug Delivery VII, pp. 214-246.
[136] Desai, A., Tai, Y. C., Davis, M. T., and Lee, T. D., 1997, “A MEMS Electrospray Nozzle for Mass Spectroscopy,” International Conference on Solid-State Sensors and Actuators, Chicago, pp.927-930.
[137] Lourenco, L. M., Krothapalli, A., and Smith, C. A., 1989, “Particle Image Velocimetry,” Advances in Fluid Mechanics Measurements, Lecture Notes in Engineering-45, Springer-Verlag, pp. 127-200.
[138] Lourenco, L. M., Krothapalli, A., Buchlin, J. M., and Riethmuller, M. L., 1986, “A Non-Invasive Experimental Technique for the Measurement of Unsteady Velocity and Vorticity Fields,” AIAA Jornal, 24, pp. 1715-1717.
[139] Lourenco, L. M., and Krothapalli A., 2004, “Stereoscopic and Time Resolved PIV Measurements in High-Speed Flows,” AIAA, 2180-2194.
[140] Willert, C., Raffel, M., Kompenhans, J., Stasicki, B., and La’hler, C., 1996, “Recent Applications of Particle Image Velocimetry in Aerodynamic Research,” Flow Meas. Instrum., 7(3/4), pp. 247-256.
[141] Raffel, M., Willert, C. E., and Kompenhans, J., 1998, Particle Image Velocimetry–A Practical Guide, Springer, ISBN 3-540-63683-8.
[142] Newbery, A. P., Rayment, T., and Grant, P. S., 2004, “A Particle Image Velocimetry Investigation of In-Flight and Deposition Behavior of Steel Droplets during Electric Arc Spray Forming,” Materials Science and Engineering A, 383, pp. 137-145.
[143] Adrian, R. J., 2005, “Twenty Years of Particle Image Velocimetry,” Experiments in Fluids, 39, pp. 159-169.
[144] Menon, M., and Lai, W. T., 1991, “Key Considerations in the Selection of Seed Particles for LDV measurements,” Laser Anemometry Advances and Applications, ASME, pp. 719-730.
[145] Ikeda, Y., Nishigaki, M., Ippommatsu, M., and Nakajima, T., 1994, “Optimum Seeding Particles for Successful Laser Doppler Velocimeter Measurements,” Part. Part. Syst. Charact., 11, pp. 127-132.
[146] Nishigaki, M., Ippommatsu, M., Ikeda, Y., and Nakajima, T., 1992, “New High-Performance Tracer Particles for Optical Gas Flow Diagnostics,” Meas. Sci. Technol., 3, pp. 619-621.
[147] Lee, K. H., Lee, C. H., and Lee, C. S., 2004, “An Experimental Study on the Spray Behavior and Fuel Distribution of GDI Injectors Using the Entropy Analysis and PIV Method,” Fuel, 83, pp. 971-980.
[148] Richter, B., Rottenkolber, G., Hehle, M., Dullenkopf, K., and Wittig, S., 2001, “Investigation of Fuel Sprays by Means of Stereoscopic Particle Image Velocimetry and Highspeed Visualization,” ILASS-Europe 2001, Zurich, 2-6 September.
[149] Lin, C. H., Tsai C. H., and Fu, L. M., 2005, “A Rapid Three-Dimensional Vortex Micromixer Utilizing Self-Rotation Effects under Low Reynolds Number Conditions,” J. Micromech. Microeng., 15, pp. 935–943.
[150] Koch, M., Evans, A. and Brunnschweiler, A., 2000, Microfluidic Technology and Application, Baldock, Hertfordshire, Research Studies Press, England.
[151]http://www.malvern.co.uk/processeng/systems/laser_diffraction/technology/technology.htm
[152] Malvern/INSITEC Technical Specifications: EPCS’, Malvern/INSITEC (1998).
[153] Cabra, R., Dibble, R. W. and Chen, J. Y., 2002, “Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner,” NASA/CR—2002-212083.
[154] Lin, T. C., 2006, “Production of Metal Powder by Atomization Processes with Internal Impinging Mechanism,” Ph.D. dissertation, Department of Aeronautics & Astronautics, NCKU.
[155] United States Pharmacopoeia, 2000, 24, pp. 2678–2679.
[156] Zhang, Y., Finlay, W. H., and Matida, E. A., 2004, “Particle Deposition Measurements and Numerical Simulation in a Highly Idealized Mouth–Throat,” Aerosol Science, 35, pp. 789–803.
[157] Kim, K. Y., and Marshall, JR., W. R., 1971, “Pneumatic Atomizers Drop-Size Distributions,” AIChE. Journal, 17(3), pp. 575-584.
[158] Geoffrey Taylor, 1960, “Formation of Thin Flat Sheets of Water,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 259(1296), pp. 1-17.
[159] White, F. M., 2006, Viscous Fluid Flow, Third Edition, McGraw-Hill Company, New York, ISBN 0-07-240231-8.
[160] Lin, S. P., and Woods, D. R., 1991, “A branching liquid jet,” Physics of Fluids A, 3(2), pp. 423 428.
[161] Lin, S. P., and Webb, R. D., 1994, “A branching liquid jet,” Physics of Fluids, 6(6), pp. 2671-2675.
[162] Haynes, A, Shaik, M. S., Krarup, H., and Singh, M., 2004, “Evaluation of the malvern spraytec with inhalation cell for the measurement of particle size distribution from metered dose inhalers,” Journal of Pharmaceutical Sciences, 93(2), pp.349-363.
[163] Yule, A. J., and Dunkley, J. J., 1994, Atomization of Mets for Power Production and Spray Deposition, Oxford University Press Inc., New York.
[164] Pryor, J. A., and Ammani Prasad, S., 2002, Physiotherapy for Respiratory and Cardiac Problems: Adults and Paediatrics, 3rd ed., Edinburgh, Churchill Livingstone, New York.
[165] McDonell, V. G. and Samuelsen, G. S., 1993a, “Structure of Vaporizing Pressure Atomized Sprays,” Atomization and Sprays, 3, pp321-364.
[166] McDonell, V. G., Adachi, M., and Samuelsen, G. S., 1993c, “Structure of Reacting and Non-reacting, Non swirling, Air-Assisted Sprays, Part II: Drop Behavior,” Atomization and Sprays, 3, pp411-436.