簡易檢索 / 詳目顯示

研究生: 高于珊
Kao, Yu-San
論文名稱: 探討主動免疫登革病毒嵌合非結構性蛋白1與3所誘導的細胞免疫反應及其提供之保護效果
Cellular immune responses and protective effects against dengue virus infection induced by active immunization with chimeric nonstructural protein 1 and nonstructural protein 3
指導教授: 林以行
Lin, Yee-Shin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 108
中文關鍵詞: 登革病毒修飾過的非結構性蛋白1非結構性蛋白3細胞免疫反應疫苗
外文關鍵詞: dengue virus, nonstructural protein 1, nonstructural protein 3, cellular immune responses, dengue vaccine
相關次數: 點閱:69下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革熱是全球重要的蚊媒病毒傳染病之一,每年約造成三億九千萬人感染。是經由登革病毒 (dengue virus) 所引起,它屬於黃熱病毒科的正向單股RNA病毒,會造成的病症可從無症狀、典型的登革熱到少數人發展成嚴重危及生命的登革出血熱以及登革休克症候群。儘管目前已有一個通過認證的減毒登革疫苗Dengvaxia,但此疫苗對於各型登革病毒的整體效能以及加重疾病的可能仍待確認。次單位疫苗(subunit vaccine) 能夠提供更安全的選擇。抗登革病毒的非結構性蛋白1 (NS1) 的抗體可以引發補體介導的細胞毒殺作用,並避免抗體依賴性免疫加強反應是更合適的登革疫苗候選者。我們實驗室先前研究顯示,NS1的C端區域會誘發導致內皮細胞失能和血小板功能障礙的交叉反應性自身抗體。因此,我們將此區域利用日本腦炎病毒 (JEV) 的相同區域替代並產生名為DJ NS1的嵌合蛋白。先前研究指出,以DJ NS1蛋白進行主動免疫,可以誘導小鼠產生良好的抗體反應及中等程度的毒殺性T淋巴球 (CTL)。為了加強細胞免疫反應,我們將DJ NS1與能夠引發顯著CD4+ 和CD8+ T細胞反應的登革非結構性蛋白3 (NS3) 結合。我們發現DJ NS1結合NS3能較有效地活化樹突狀細胞並增加抗原呈現相關受體分子的表現,也產生對於DJ NS1與NS3抗原具有特異性的CD4+ 和CD8+ T細胞活化反應以及抗體反應。此外我們也進一步地證實對於NS3特異性的T細胞具有產生干擾素伽瑪 (IFN-gamma 的能力並增加細胞毒殺活性標記的表現 (CD107a)。我們也進一步證實對於NS3特異性的T細胞,可藉由細胞介導的細胞毒殺功能將登革病毒感染的細胞殺死。為了評估疫苗所能提供的保護力,我們建立可以表現病毒血症的登革感染動物模式,並證實以DJ NS1結合NS3進行主動免疫確實能更全面性的壓制病毒複製並減緩包含出血時間延長以及出血問題等登革病徵。總結,在這個研究當中,我們證實了以DJ NS1結合NS3進行主動免疫能夠引發較優化的細胞免疫反應,並在登革感染情況下提供良好的保護效果。因此,DJ NS1結合NS3可做為一個有發展潛力的登革疫苗。

    Dengue virus (DENV) has become a major global public health threat with four serotypes of the virus infecting over 390 million people annually. DENV causes a range of illness with a small proportion of infected patients developing severe dengue hemorrhagic fever or dengue shock syndrome. To date, there is only one licensed dengue vaccine; however, the overall efficacy and the risk of vaccine- enhanced severity of disease remain concerned. Recombinant protein subunit vaccines offer a safer alternative. To avoid antibody (Ab)-mediated enhancing effect of DENV infection, nonstructural protein 1 (NS1) is an appropriate candidate for Ab triggering complement-dependent cytolysis of DENV-infected cells. Our previous studies demonstrated that anti-DENV NS1 Abs can lead to endothelial cell damage and platelet dysfunction by cross-reactivity. Therefore, we modified the DENV NS1 by replacing the C-terminal region which contains cross-reactive epitopes with the corresponding region of JEV NS1 to generate a chimeric DJ NS1 protein as a vaccine candidate. Our preliminary data showed that active immunization with DJ NS1 can induce strong Ab response and moderate cytotoxic T lymphocyte (CTL) responses. To enhance cellular immunity, we further combined DJ NS1 with DENV NS3, which is immunodominant in CD4+ and CD8+ T cell responses. Combined immunization with DJ NS1 and NS3 can activate dendritic cells to up-regulate expression of CD40, CD80, CD86, MHC class I, and MHC class II. We also observed that immunization with DJ NS1 and NS3 can induce specific T cell activation and Ab responses. We further determined the NS3-specific CTL responses by increased IFN-gamma production and CD107a expression as well as the LDH release from target cells. Importantly, the protective effects attributed by DJ NS1 and NS3 immunization were demonstrated in DENV-infected mouse model including viral titers, soluble NS1 levels, mouse tail bleeding time, and hyperemia at local skin. Collectively, the results from this study reveal the humoral and cellular immune responses and the protective effects conferred by DJ NS1 and NS3 immunization in the mouse model of DENV infection, and provide a potential strategy for dengue vaccine design.

    中文摘要 i Abstract iv Acknowledgement vi Contents vii Figure List x Abbreviations xii Introduction 1 I. Epidemiology of DENV infection 1 II. Clinical symptoms of DENV disease 2 III. Characteristics of DENV 3 i. The structural proteins (C, prM and E) 3 ii. The nonstructural proteins (NS1-NS5) 4 IV. The pathogenesis of DENV infection 6 i. Cell and tissue tropism 7 ii. Virus variation 7 iii. Antibody-dependent enhancement (ADE) 8 iv. Autoimmunity 8 v. Cellular immune response 9 vi. Soluble factors and vascular leakage 9 vii. Complement activation 9 viii. Mast cell activation 10 V. Immune responses of DENV infection 10 i. The innate immunity 11 ii. The adaptive immunity 12 VI. DENV vaccine development 13 Specific aims 19 Materials and Methods 21 A. Materials 21 A-1 Mice 21 A-2 Cell lines 21 A-3 Viruses 21 A-4 Preparation of recombinant proteins 22 A-5 Preparation of mixing immunogen with the Imject Alum 23 A-6 Drugs and reagents 23 A-7 Antibodies 26 A-8 Kits 27 A-9 Consumables 27 A-10 Instruments 28 B. Methods 29 B-1 Cell cultures 29 B-2 Virus cultures 30 B-3 Plaque assay 30 B-4 Ab titer determination 30 B-5 Intracellular stain of NS3 expression in L929 cells 31 B-6 Analysis for dendritic cell activation 31 B-7 Analysis for CD4+ and CD8+ T cell activation 31 B-8 Analysis for surface CD107a of CD8+ T cells 32 B-9 Intracellular stain of IFN- production by CD4+ and CD8+ T cell 32 B-10 Lactate dehydrogenase-based cytotoxic assay 32 B-11 Active immunization mouse model 33 B-12 Infection mouse model 33 B-13 Mouse tail bleeding time 33 B-14 NS1 quantitative ELISA 34 B-15 Hyperemia quantification 34 B-16 Fluorescent focus assay (FFA) 34 B-17 Indirect fluorescent assay (IFA) 35 B-18 Gel electrophoresis and Western blotting 35 B-19 Statistical analysis 36 Results 37 I. Preparation of DJ NS1 and NS3 proteins 37 i. DJ NS1 37 ii. DENV NS3 37 iii. NS3 proteins have no cytotoxicity in vitro 37 iv. NS3 proteins have no cytotoxicity in vivo 38 II. Immune responses induced by active immunization with various doses of DJ NS1 and NS3 38 i. Ab responses 38 ii. Cellular immune responses 40 III. To adjust the ratio of DJ NS1 to NS3 to optimize immune responses 42 i. Ab responses 43 ii. Cellular immune responses 43 IV. To explore whether the optimized immune responses induced by active immunization with DJ NS1 and NS3 provide protective effects against DENV infection. 52 i. Ab responses 52 ii. Virus control and clearance 53 iii. Prevention of DENV-induced pathogenesis 54 Discussion 56 Conclusion 64 References 66 Figures 80 Appendix 105

    Abraham, S.N., St John, A.L. (2010) Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10: 440-452.
    Aguirre, S., Luthra, P., Sanchez-Aparicio, M.T. (2017) Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2: 17037.
    Amorim, J.H., Diniz, M.O., Cariri, F.A., et al. (2012) Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine 30: 837-845.
    Amorim, J.H., Alves, R.P., Boscardin, S.B., et al. (2014) The dengue virus non-structural 1 protein: risks and benefits. Virus Res. 181: 53-60.
    Arias, C.F., Preugschat, F., Strauss, J.H. (1993) Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193: 888-899.
    Avirutnan, P., Punyadee, N., Noisakran, S., et al. (2006) Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J. Infect. Dis. 193: 1078-1088.
    Avirutnan, P., Fuchs, A., Hauhart, R.E., et al. (2010) Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J. Exp. Med. 207: 793-806.
    Avirutnan, P., Hauhart, R.E., Somnuke, P., et al. (2011) Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J. Immunol. 187: 424-433.
    Bach, E.A., Aguet, M., Schreiber, R.D. (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15: 563-591.
    Bardina S.V., Bunduc P., Tripathi S., et al. (2017) Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356: 175-180.
    Bartelma, G., Padmanabhan, R. (2002) Expression, purification, and characterization of the RNA 5'-triphosphatase activity of dengue virus type 2 nonstructural protein 3. Virology 299: 122-132.
    Basu, A., Jain, P., Gangodkar, S.V., Shetty, S., Ghosh K. (2008) Dengue 2 virus inhibits in vitro megakaryocytic colony formation and induces apoptosis in thrombopoietin-inducible megakaryocytic differentiation from cord blood CD34+ cells. FEMS Immunol. Med. Microbiol. 53: 46-51.
    Beatty, P.R., Orozco, S., Killingbeck, S., et al. (2013) Dengue virus nonstructural protein 1 vaccine protects against lethal challenge in interferon ɑ/β (receptor-deficient mice (P6348). J. Immunol. 190: 182.26.
    Beatty, P.R., Puerta-Guardo, H., Killingbeck, S.S., et al. (2015) Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med. 7: 304ra141.
    Bethell, D. B. et al. (1998) Pathophysiologic and prognostic role of cytokines in dengue hemorrhagic fever. J. Infect. Dis. 177: 778-782.
    Betts, M.R., Brenchley, J.M., Price, D.A., et al. (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol. Methods 281: 65-78.
    Bhatt, S., Gething, P.W., Brady, O.J., et al. (2013) The global distribution and burden of dengue. Nature 496: 504-507.
    Boehm, U., Klamp, T., Groot, M., Howard, J.C. (1997) Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15: 749-795.
    Carnaud, C., Lee, D., Donnars, O., et al. (1999) Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647-4650.
    Castanha P.M.S., Nascimento E.J.M., Braga C., et al. (2017) Dengue Virus-Specific Antibodies Enhance Brazilian Zika Virus Infection. J. Infect. Dis. 215:781-785.
    Chang, S.F., Huang, J.H., Shu, P.Y. (2012) Characteristics of dengue epidemics in Taiwan. J. Formos. Med. Assoc. 111: 297-299.
    Chappell, K.J., Stoermer, M.J., et al. (2008) Mutagenesis of the West Nile virus NS2B cofactor domain reveals two regions essential for protease activity. J. Gen. Virol. 89: 1010-1014.
    Chavez-Salinas, S., Ceballos-Olvera, I., Reyes-Del Valle, J., et al. (2008) Heat shock effect upon dengue virus replication into U937 cells. Virus Res. 138: 111-118.
    Chen, L.C., Lei, H.Y., Liu, C.C., et al. (2006) Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am. J. Trop. Med. Hyg. 74: 142-147.
    Chen, H.C., Hofman, F.M., Kung, J.T., et al. (2007) Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J. Virol. 81: 5518-5526.
    Chen, C.Y. (2014) Studies on the protective effect of chimeric dengue virus nonstructural protein 1 with polymeric nanocomplex-based adjuvant in the mouse model. Master thesis of Science in Department of Microbiology and Immunology, College of Medicine, National Chen Kung University.
    Chen, H.R., Chuang, Y.C., Lin, Y.S., et al. (2016) Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS. Negl. Trop. Dis. 10: e0004828.
    Chen H.R., Chao C.H., Liu C.C., et al. (2018) Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS. Pathog. 14: e1007033.
    Chen, Z., Huang, A., Sun, J. et al. (2017) Inference of immune cell composition on the expression profiles of mouse tissue. Sci. Rep. 7: 40508.
    Chan, Y.K., Gack, M.U., et al. (2016) A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat. Immunol. 17: 523-530.
    Chu, Y.T., Wan, S.W., Chang, Y.C., et al. (2017) Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation. Lab. Invest. doi: 10.1038.
    Chuang, Y.C., Lin, Y.S., Liu, C.C., et al. (2013) Factors contributing to the disturbance of coagulation and fibrinolysis in dengue virus infection. J. Formos. Med. Assoc. 112: 12-17.
    Chuang, Y.C., Lei, H.Y., Liu, H.S., et al. (2011) Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine 54: 222e31.
    Chung K.M., Thompson B.S., Fremont D.H., Diamond M.S. (2007) Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile Virus-infected cells. J. Virol. 81: 9551-9555.
    Chungue, E., Poli, L., Roche, C., et al. (1994) Correlation between detection of plasminogen cross-reactive antibodies and hemorrhage in dengue virus infection. J Infect. Dis. 170: 1304e7.
    Churdboonchart V, Bhamarapravati N, Peampramprecha S, Sirinavin S. (1991) Antibodies against dengue viral proteins in primary and secondary dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 44: 481-493.
    Clyde, K., Kyle, J.L., Harris, E. et al. (2006) Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J. Virol. 80: 11418-11431.
    Conde, J.N., Silva, E.M., Barbosa, A.S., Mohana-Borges R. (2017) The Complement System in Flavivirus Infections. Front. Microbiol. 8: 213.
    Costa, V.V., Ye, W., Chen, Q., et al. (2017) Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules. MBio 8: e00741-17.
    Couvelard, A., Marianneau, P., Bedel, C., et al. (1999) Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum. Pathol. 30: 1106-1110.
    de Alwis R, Smith SA, Olivarez NP, et al. (2012) Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl. Acad. Sci. U S A. 109: 7439-7444.
    de Azeredo, E.L., Monteiro, R.Q., de-Oliveira Pinto, L.M. (2015) Thrombocytopenia in dengue: Interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediators Inflamm. 2015: 313842.
    Dejong, C.H., van de Poll, M.C., Soeters, P.B., et al. (2007) Aromatic amino acid metabolism during liver failure. J. Nutr. 137: 1579S-1585S
    Dmitriev, I.P., Khromykh, A.A., Ignatyev, G.M., et al. (1996) Immunization with recombinant vaccinia viruses expressing structural and part of the nonstructural region of tick-borne encephalitis virus cDNA protect mice against lethal encephalitis. J. Biotechnol. 44: 97-103.
    Duangchinda T., Dejnirattisai W., Vasanawathana S., et al. (2010) Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. Proc. Natl. Acad. Sci. U S A. 107: 16922-16927.
    Falgout, B., Pethel, M., Zhang, Y.M., Lai, C.J. (1991) Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol. 65: 2467-2475.
    Falgout, B., Markoff, L. (1995) Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J. Virol. 69: 7232-7243.
    Flipse, J., Smit, J.M. (2015) The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response. PLoS. Negl. Trop. Dis.. 9: e0003749.
    Flaishon, L., Hershkoviz, R., Lantner, F., et al. (2000) Autocrine secretion of interferon gamma negatively regulates homing of immature B cells. J. Exp. Med. 192: 1381-1388.
    Frucht, D. M., Fukao, T., Bogdan, C., et al. (2001) IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol. 22: 556-560.
    Funahara Y., Sumarmo, Wirawan R. (1983) Features of DIC in dengue hemorrhagic fever. Bibl. Haematol. 49: 201–211.
    Endy, T. P., Nisalak, A., Chunsuttitwat, S., et al. (2004) Relationship of pre-existing dengue virus (DV) neutralizing antibody levels to viremia and disease severity in a prospective cohort study of DV infection in Thailand. J. Infect. Dis. 189: 990-1000.
    Green, A.M., Beatty, P.R., Hadjilaou, A., et al. (2014) Innate immunity to dengue virus infection and subversion of antiviral responses. J. Mol. Biol. 426:1148-1160.
    Guy, B. (2007) The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol. 5: 505-517.
    Guy, B., Nougarede, N., Begue, S., et al. (2008) Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects. Vaccine 26: 5712-5721.
    Guy, B., Barban, V., Mantel, N., et al. (2009) Evaluation of interferences between dengue vaccine serotypes in a monkey model. Am. J. Trop. Med. Hyg. 80: 302-311.
    Guy, B., Barrere, B., Malinowski, C., et al. (2011) From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 29: 7229-7241.
    Guzman, A., Istúriz, R.E. (2010) Update on the global spread of dengue. Int. J. Antimicrob. Agents 36: 40-42.
    Guzman, M.G., Alvarez, M., Halstead, S.B. (2013) Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 158: 1445-1459.
    Guzman, M.G., Harris E. (2015) Dengue. Lancet 385: 453-465.
    Hadinegoro, S.R., Arredondo-García, J.L., Capeding, M.R., et al. (2015) Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N. Engl. J. Med. 373: 1195-1206.
    Halstead, S.B. (1970) Observations related to pathogensis of dengue hemorrhagic fever. VI. Hypotheses and discussion. Yale. J. Biol. Med. 42: 350-362.
    Halstead, S.B. (2007). Dengue. Lancet 370: 1644-1652.
    Halstead, S.B. (2013) Identifying protective dengue vaccines: guide to mastering an empirical process. Vaccine 31: 4504-4507.
    Harandi, A.M., Medaglini, D., Shattock, R.J. (2010) Vaccine adjuvants: a priority for vaccine research. Vaccine 28: 2363-2366.
    Hatch, S., Endy, T.P., Thomas, S., et al. (2011) Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection. J. Infect. Dis. 203: 1282-1291.
    Heath, W.R., Carbone, F.R. (2009) Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10: 1237-1244.
    Hershkovitz, O., Rosental, B., Rosenberg, L.A., et al. (2009) NKp44 receptor mediates interaction of the envelopeglycoproteins from the West Nile and dengue viruses with NK cells. J. Immunol.183: 2610-2621
    Ho, L.J., Hung, L.F., Weng, C.Y. et al. (2005) Dengue virus type 2 antagonizes IFN-alpha but not IFN-gamma antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. J. Immunol. 174: 8163-8172.
    Hottz E. D., Oliveira M. F., Nunes P. C. G., et al. (2013) Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J. Thromb. Haemost. 11: 951-962.
    Hsu, Y.L., Wang, M.Y., Ho, L.J., Lai, J.H. (2016) Dengue virus infection induces interferon-lambda1 to facilitate cell migration. Sci. Rep. 6: 24530.
    Kalayanarooj S. (2011) Clinical Manifestations and Management of Dengue/DHF/DSS. Trop. Med. Health 39: 83-87.
    Khumthong, R., Angsuthanasombat, C., Panyim, S., Katzenmeier, G. (2002) In vitro determination of dengue virus type 2 NS2B-NS3 protease activity with fluorescent peptide substrates. J. Biochem. Mol. Biol. 35: 206-212.
    Kim, Y.M., Gayen, S., et al. (2013) NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. J. Biol. Chem. 288: 12891-12900.
    Kirkpatrick, B.D., Whitehead, S.S., Pierce, K.K., et al. (2016) The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci. Transl. Med. 18: 330ra36.
    Kirtane, A.J., Leder, D.M., Waikar, S.S., et al. (2005) Serum blood urea nitrogen as an independent marker of subsequent mortality among patients with acute coronary syndromes and normal to mildly reduced glomerular filtration rates. J. Am. Coll. Cardiol. 45: 1781-1786.
    Kouri, G.P., Guzmán, M.G., Bravo, J.R., Triana, C. (1989) Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic, 1981. Bull. World Health Organ. 67: 375-380.
    Krzyzowska, M., Cymerys, J., Winnicka, A., et al. (2012) Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain. Virus Res. 115: 141-149.
    Kuhn, R.J., Zhang, W., Rossmann, M.G., et al. (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108: 717-725.
    Kunder, C.A., St John, A.L., Abraham, S.N. (2011) Mast cell modulation of the vascular and lymphatic endothelium. Blood. 118: 5383-5393.
    Kurane, I., Hebblewaite, D., Brandt, W.E., Ennis, F.A. (1984) Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J. Virol. 52: 223-230.
    Kurane, I., Ennis, F.A. (1987) Induction of interferon alpha from human lymphocytes by autologous, dengue virus-infected monocytes. J. Exp. Med. 166: 999-1010.
    Kurane, I., Ennis, F.A. (1988) Production of interferon alpha by dengue virus-infected human monocytes. J. Gen. Virol. 69: 445-449.
    Lai, Y.C., Chuang, Y.C., Liu, C.C., et al. (2017) Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection. Sci. Rep. 7: 6975.
    Lam, J.H., Chua, Y.L., Lee, P.X., et al. (2017) Dengue vaccine-induced CD8+ T cell immunity confers protection in the context of enhancing, interfering maternal antibodies. JCI Insight 2: 94500.
    Laoprasopwattana, K., Libraty, D.H., Endy, T.P., et al. (2007) Antibody dependent cellular cytotoxicity in pre-secondary dengue virus serotype 3 (DV3) but not in DV2 infection plasma samples inversely correlated with viremia levels. J. Infect. Dis. 195: 1108-1116
    Laura A. Byk and Andrea V. Gamarnik. (2016) Properties and Functions of the Dengue Virus Capsid Protein. Annu. Re.v Virol. 3: 263-281.
    Lee, J.S., Mogasale, V., Lim, J.K., et al. (2017) A multi-country study of the economic burden of dengue fever: Vietnam, Thailand, and Colombia. PLoS Negl. Trop. Dis. 11: e0006037.
    Leitmeyer, K.C., Vaughn, D.W., Watts, D.M., et al. (1999) Dengue virus structural differences that correlate with pathogenesis, J. Virol. 73: 4738-4747.
    Leung, D., Schroder, K., White, H., (2001) Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J. Biol. Chem. 276: 45762-45771.
    Li, J., Lim, S.P., Beer, D., et al. (2005) Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J. Biol. Chem. 280: 28766-28774.
    Libraty, D.H., Young, P.R., Pickering, D., et al. (2002) High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J. Infect. Dis. 186: 1165-1168.
    Lighvani, A.A., Frucht, D.M., Jankovic, D., et al. (2001) T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. U S A. 98: 15137-15142.
    Lin, C.F., Lei, H.Y., Shiau, A. L., et al. (2003) Antibodies from dengue patient sera cross‐react with endothelial cells and induce damage. J. Med. Virol. 69: 82-90.
    Lin C.F., Wan S.W., Cheng H.J., Lei H.Y., Lin Y.S. (2006) Autoimmune pathogenesis in dengue virus infection. Viral Immunol. 19: 127-132.
    Lin, C.F., Lei, H.Y., Yeh, T.M., et al. (2008) Patient and mouse antibodies against Dengue virus nonstructural protein 1 cross-react with platelets and cause their dysfunction or depletion. Am. J. Infect. Dis. 4: 69-75.
    Lin S.W., Chuang Y.C., Lin Y.S., Lei H.Y., Liu H.S., Yeh T.M. (2012) Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J. Infect. 64: 325-334.
    Lin, Y.S., Yeh, T.M., Lin, C.F., et al. (2011) Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp. Biol. Med. 236: 515-523.
    Lindenbach B.D. and Rice,C.M. (2001) Flaviviridae: the viruses and their replication. Fields Virology. Lippincott-Williams & Wilkins, Philadelphia, PA: 991-1041.
    Liu, I.J., Chiu, C.Y., Chen, Y.C. et al. (2011) Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus. J. Biol. Chem. 286: 9726-9736.
    Lixin, M., Christopher, T.J., Teresa D.G., et al. (2004) Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl. Acad. Sci. U S A. 101: 3414-3419.
    Lu. Y.C., Yeh, W.C., Ohashi, P.S. (2008) LPS/TLR4 signal transduction pathway. Cytokine 42: 145-151.
    Luo, D., Xu, T., Hunke, C., et al. (2008) Crystal structure of the NS3 protease-helicase from dengue virus. J. Virol. 82: 173-183.
    Ma, D.Y., Clark, E.A. (2009) The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol. 21: 265-272.
    Makroo R.N., Raina V., Kumar P., Kanth R.K. (2007) Role of platelet transfusion in the management of dengue patients in a tertiary care hospital. Asian J. Transfus. Sci. 1: 4-7.
    Marchi R., Nagaswami C., Weisel J.W. (2009) Fibrin formation and lysis studies in dengue virus infection. Blood Coagul. Fibrinolysis. 20: 575-582.
    Markoff, L.J., Innis, B.L., Houghten, R., Henchal, L.S. (1991) Development of cross-reactive antibodies to plasminogen during the immune response to dengue virus infection. J. Infect. Dis. 164: 294-301.
    Martina, B.E., Koraka, P., Osterhaus, A.D. (2009) Dengue virus pathogenesis: an integrated view. Clin.. Microbiol. Rev. 22: 564-581.
    Masaki H., Fujii Y., Wakasa-Morimoto C., et al. (2009) Induction of specific and flavivirus--Cross-reactive CTLs by immunization with a single dengue virus-derived CTL epitope peptide. Virus Res. 144: 188-194.
    Mathew A. (2018) Regulation and Function of NK and T Cells During Dengue Virus Infection and Vaccination. Adv. Exp. Med. Biol. 1062: 251-264.
    Mehlhop, E., Ansarah-Sobrinho, C., Johnson, S., et al. (2007) Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. Cell. Host. Microbe 2: 417-426.
    Miller, S., Kastner, S., Krijnse-Locker, J., et al. (2007) The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem. 282: 8873-8882.
    Modhiran, N., Watterson, D., Blumenthal, A., et al. (2017) Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol. Cell. Biol. 95: 491-495.
    Modis, Y., Ogata, S., Clements, D., et al. (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. U S A. 100: 6986–6991.
    Morrison, J., Aguirre, S., Fernandez-Sesma, A. (2012) Innate immunity evasion by Dengue virus. Viruse. 4: 397-413.
    Morrison, J., Laurent-Rolle, M., Maestre, A.M., et al. (2013) Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog. 9: e1003265.
    Müllbacher, A., Lobigs, M., Hla, R.T., et al. (2002) Antigen-dependent release of IFN-gamma by cytotoxic T cells up-regulates Fas on target cells and facilitates exocytosis-independent specific target cell lysis. J. Immunol. 169: 145-150.
    Muñoz-Jordán, J.L., Laurent-Rolle, M., Ashour, J., (2005) Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J. Virol. 79: 8004-8013.
    Mukhopadhyay, S., Kuhn, R.J., Rossmann, M.G. (2005) A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3: 13-22.
    Nakao S., Lai C.J., Young N.S. (1989) Dengue virus, a flavivirus, propagates in human bone marrow progenitors and hematopoietic cell lines. Blood. 74:1235-1240.
    Nair-Gupta, P., Baccarini, A., Tung, N., et al. (2014) TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158: 506-521.
    Nasirudeen, A.M., Wong, H.H., Thien, P., et al. (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl. Trop. Dis. 5: e926.
    Osorio, J.E., Partidos, C.D., Wallace, D., et al. (2015) Development of a recombinant, chimeric tetravalent dengue vaccine candidate. Vaccine 33: 7112-7120.
    Osorio, J.E., Wallace, D., Stinchcomb, D.T. (2016) A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone. Expert Rev Vaccines 15: 497-508.
    Pang, T., Cardosa, M.J. Guzman, M.G. (2007) Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol. Cell. Biol. 85: 43-45.
    Pang, E.L., Loh, H.S. (2017) Towards development of a universal dengue vaccine - How close are we? Asian. Pac. J. Trop. Med. 10: 220-228.
    Patz, J.A., Martens, W.J., Focks, D.A., Jetten, T.H. (1998) Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ. Health Perspect. 106: 147-153.
    Perrie, Y., Mohammed, A.R., Kirby, D.J., et al. (2008) Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 364: 272-280.
    Platanias, L.C. (2005) Mechanisms of type-I- and type-II-interferonmediated signalling. Nat. Rev. Immunol. 5: 375-386.
    Pryor, M.J., Rawlinson, S.M., Butcher, R.E., et al. (2007) Nuclear localization of dengue virus nonstructural protein 5 through its importin alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic. 8: 795-807.
    Puerta-Guardo, H., Raya-Sandino, A., González-Mariscal, L., et al. (2013) The cytokine response of U937-derived macrophages infected through antibody-dependent enhancement of dengue virus disrupts cell apical-junction complexes and increases vascular permeability. J. Virol. 87: 7486-7501.
    Puerta-Guardo, H., Glasner, D.R., Harris, E. (2016) Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog. 12: e1005738.
    Ramírez R., Falcón R., Izquierdo A., García A., et al. (2014) Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design. Virus Genes 49: 185-195.
    Rau, H., Revets, H., Balmelli, C., McCullough, K.C., Summerfield, A. (2005) Immunological properties of recombinant classical swine fever virus NS3 protein in vitro and in vivo. Vet. Res. 37: 155-168.
    Rico-Hesse, R., Harrison, L.M., Salas, R.A., et al. (1997) Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology. 230: 244-251.
    Rosen L. (1986) The pathogenesis of dengue haemorrhagic fever. A critical appraisal of current hypotheses. S. Afr. Med. J. Suppl: 40-42.
    Roth, E., Pircher, H. (2004) IFN-gamma promotes Fas ligand- and perforin-mediated liver cell destruction by cytotoxic CD8 T cells. J. Immunol. 172: 1588-1594.
    Rothman, A.L. (2011) Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11: 532-543.
    Rothman A.L., Medin C.L., Friberg H., Currier J.R. (2014) Immunopathogenesis versus protection in dengue virus infections. Curr. Trop. Med. Rep. 1: 13-20.
    Sampath, A., Xu, T., Chao, A., Luo, D., et al. (2006) Structure-Based Mutational Analysis of the NS3 Helicase from Dengue Virus. J. Virol. 80: 6686–6690.
    Sabchareon, A., Wallace, D., Sirivichayakul, C., et al. (2012) Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 380: 1559-1567.
    Sáez-Llorens, X., Tricou, V., Yu, D., et al. (2018) Immunogenicity and safety of one versus two doses of tetravalent dengue vaccine in healthy children aged 2-17 years in Asia and Latin America: 18-month interim data from a phase 2, randomised, placebo-controlled study. Lancet Infect. Dis. 18: 162-170.
    Saha, A.K., Maitra, S., Hazra, S.C. (2013) Spectrum of hepatic dysfunction in 2012 dengue epidemic in Kolkata, West Bengal. Indian J. Gastroenterol. 32: 400-403.
    Sant, A.J., and McMichae,l A. (2012) Revealing the role of CD4(+) T cells in viral immunity. J. Exp. Med. 209:1391-1395.
    Schmid, M.A., Diamond, M.S., Harris, E. (2014) Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity. Front. Immunol. 5: 647.
    Screaton, G., Mongkolsapaya, J., Yacoub, S., et al. (2015) New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 15: 745-759.
    Simone, M. C., Anna P. Y., Antônio J.S., et al. (2011) Induction of a Protective Response in Mice by the Dengue Virus NS3 Protein Using DNA Vaccines. PLoS One 6: e25685.
    Simmons, M., Sun, P., Putnak, R. (2016) Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine. PLoS One 11: e0152811.
    Sprokholt, J.K., Kaptein, T.M., van Hamme, J.L. (2017) RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production. PLoS Pathog. 13: e1006738.
    St John, A.L., Rathore, A.P., Raghavan, B., et al. (2013) Contributions of mast cells and vasoactive products, leukotrienes and chymase to dengue virus-induced vascular leakage. eLife 2: e00481.
    Stinchcombe, J.C., Bossi, G., Booth, S., Griffiths, G.M. (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15: 751-761.
    Susan, L. S., K. Kai M., Tara M. S. (2012) Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 12: 136-148.
    Tan, C.H., Yap, E.H., Singh, M., et al. (1990) Passive protection studies in mice with monoclonal antibodies directed against the non-structuralprotein NS3 of dengue 1 virus. J. Gen. Virol. 71: 745–749
    Tang, X. N., Berman, A. E., Swanson, R. A. & Yenari, M. A. (2010) Digitally quantifying cerebral hemorrhage using Photoshop and Image J. J. Neurosci. Methods 190: 240-243.
    Teoh, P.G., Huang, Z.S., Pong, W.L., et al. (2014) Maintenance of dimer conformation by the dengue virus core protein α4-α4' helix pair is critical for nucleocapsid formation and virus production. J. Virol. 88: 7998-8015.
    Thaiss, C.A., Semmling, V., Franken, L., et al. (2011) Chemokines: a new dendritic cell signal for T cell activation. Front. Immunol. 2: 31.
    Thisyakorn Usa and Chule Thisyakorn. (2014) Latest developments and future directions in dengue vaccines. Ther. Adv. Vaccines 2: 3–9.
    Tomer, H., P. Robert B., Zachary M., et al. (2017)Antibody epitopes identified in critical regions of dengue virus nonstructural 1 protein in mouse vaccination and natural human infections. J. Immunol. 198: 4025–4035.
    Valdés K., Alvarez M., Pupo M., Vázquez S., Rodríguez R., Guzmán M.G. (2000) Human dengue antibodies against structural and nonstructural proteins. Clin. Diagn. Lab. Immunol. 7: 856-857.
    Vogt, M.R., Moesker, B., Goudsmit, J., et al. (2009) Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step. J. Virol. 83: 6494-6507.
    Wan, S.W., Lin, C.F, Chen, M.C., et al. (2008) C-terminal region of dengue virus nonstructural protein 1 is involved in endothelial cell cross-reactivity via molecular mimicry. Am. J. Infect. Dis. 4: 85-91.
    Wan, S.W., Lin, C.F., Yeh, T.M., et al. (2013) Autoimmunity in dengue pathogenesis. J. Formos. Med. Assoc. 112: 3-11.
    Wan, S.W., Lu, Y.T., Huang, C.H., et al. (2014) Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One 9: e92495.
    Wan S.W., Chen, P.W., Chen, C.Y., et al. (2017) Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection. J. Immunol. 199: 2834-2844.
    Wang, J.P., Liu, P., Latz, E., et al. (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J. Immunol. 177: 7114–7121.
    Wang, S.F., Chang, K., Loh, E.W., et al. (2016) Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg. Microbes. Infect. 5: e123.
    Weiskopf, D., Angelo, M.A., de Azeredo, E.L., et al. (2013) Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl. Acad. Sci. U S A. 110: E2046–E2053.
    Weiskopf, D., Bangs, D.J., Sidney, J., et al. (2015) Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc. Natl. Acad. Sci. U. S. A. 112: E4256–E4263.
    Wen, J., Elong Ngono A., Regla-Nava J.A., et al. (2017) Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nat. Commun. 8: 1459.
    Wichmann, O., Vannice, K., Asturias, E.J., et al. (2017) Live-attenuated tetravalent dengue vaccines: The needs and challenges of post-licensure evaluation of vaccine safety and effectiveness. Vaccine 35: 5535-5542.
    Whitehead, S.S. (2017) Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine? Expert. Rev. Vaccines 15: 509-517.
    Whitehorn, J., Farrar, J. (2010) Dengue. Br. Med. Bull. 95: 161-173.
    Whitehorn, J., and Simmons, C.P. (2011) The pathogenesis of dengue. Vaccine 29: 7221-7228.
    Whitehorn, J., Chau, T.N., Nguyet, N.M., et al. (2013) Genetic variants of MICB and PLCE1 and associations with non-severe dengue. PLoS One 8: e59067
    WHO. (2007) Scientific Working Group Report on Dengue (WHO, Geneva, Switzerland).
    WHO. (2009) Dengue: guidelines for diagnosis, treatment, prevention and control.
    WHO. (2012) Global strategy for dengue prevention and control.
    Wu, S.J., Grouard-Vogel, G., Sun, W., et al. (2000) Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 6: 816-820.
    Xie, X., Gayen, S., Kang, C., Yuan, Z., Shi, P.Y. (2013) Membrane topology and function of dengue virus NS2A protein. J. Virol. 87: 4609-4622.
    Xie, X., Zou, J., Puttikhunt, C., et al. (2015) Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J. Virol. 89: 1298-1313.
    Yauch, L.E., Shresta, S. (2008) Mouse models of dengue virus infection and disease. Antiviral Res. 80: 87-93.
    Yen, Y.T., Chen, H.C., Lin, Y.D., et al. (2008) Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J. Virol. 82: 12312-12324.
    Young, H.A. (1996) Regulation of interferon-gamma gene expression. J. Interferon Cytokine Res. 16: 563-568.
    Yu, C.Y., Chang, T.H., Liang, J.J., et al. (2012) Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog. 8: e1002780.
    Zellweger, R.M., Miller, R., Eddy, W.E., et al. (2013) Role of humoral versus cellular responses induced by a protective dengue vaccine candidate. PLoS Pathog. 9: e1003723.
    Zellweger, R.M., Eddy, W.E., Tang, W.W., et al. (2014) CD8+ T cells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice. J. Immunol. 193: 4117-4124.
    Zellweger, R.M., Tang, W.W., Eddy, W.E., et al. (2015) CD8+ T cells can mediate short-term protection against heterotypic dengue virus reinfection in mice. J. Virol. 89: 6494-6505.
    Zinkernagel, R.M. and Doherty, P.C. (1975) H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D. J. Exp. Med. 141: 1427-1436.
    Zompi, S., Santich, B.H., Beatty, P.R. et al. (2012) Protection from secondary dengue virus infection in a mouse model reveals the role of serotype cross-reactive B and T cells. J. Immunol. 188: 404-416.

    下載圖示 校內:2023-07-30公開
    校外:2023-07-30公開
    QR CODE