簡易檢索 / 詳目顯示

研究生: 吳政儀
Wu, Cheng-Yi
論文名稱: 磁化表面電漿子模擬研究–使用VORPAL程式 "linPlasDielcUpdater" 模組
Simulation and Study of Surface Magnetoplasmons- Using "linPlasDielcUpdater" Model of VORPAL
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 53
中文關鍵詞: 磁化表面電漿子VORPAL線性電漿模組
外文關鍵詞: Surface Magnetoplasmons, VORPAL, linPlasDielcUpdater
相關次數: 點閱:85下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用有限時域差分法(FDTD)模擬計算表面電漿在金屬與介電質結構中傳遞的現象,並使用粒子式電漿電磁模擬軟體-VORPAL中的線性電漿模組(linPlasDielcUpdater)驗證磁化表面電漿子在金屬介電質(MI)結構、金屬介電質金屬(MIM)結構及金屬介電質週期結構下磁化表面電漿子色散曲線理論的正確性。分析並討論在不同外加磁場的條件下,對磁化表面電漿子所造成的影響,期望能以磁場操控電漿-介電質波導陣列之布洛赫振盪。

    This research uses Finite-Difference Time-Domain method to simulate surface plasmas propagating on metal-dielectric waveguides surface. Using "linPlasDielcUpdater" Model of VORPAL tests and verifies the accuracy of dispersion relation of surface magnetoplasmons passing through MI, MIM, and MI periodic structures. We analyse and discuss the different conditions of surface magnetoplasmons effected by changing external magnetic fields and propose manipulating Bloch oscillation in plasmon-dielectric waveguide arrays by using magnetic fields.

    口試合格證明 .................................................................................................. I 摘要................................................................................................................II 英文摘要 ....................................................................................................... III 誌謝 ............................................................................................................. IV 目錄 .............................................................................................................. V 圖目錄 ......................................................................................................... VII 第一章 表面電漿子簡介..................................................................................... 1 1.1 簡介.................................................................................................... 1 1.2 Drude Model ..................................................................................... 2 1.3 磁化電漿 ............................................................................................. 4 第二章 模擬方法-有限時域差分法(FDTD) ........................................................... 7 2.1 FDTD發展簡介 .................................................................................... 7 2.2 FDTD原理及旋度方程式的離散化 ........................................................... 8 2.3 數值穩定條件(Courant Condition) ...................................................... 12 2.4 吸收邊界條件 .................................................................................... 16 第三章 模擬程式-VORPAL簡介 ....................................................................... 20 3.1 簡介 ................................................................................................. 20 3.2 linPlasDielcUpdater模組 ................................................................... 22 第四章 模擬結構與結果討論 ........................................................................... 27 4.1 金屬-介電質(MI)結構的表面電漿模態 ................................................... 27 4.2 金屬-介電質-金屬(MIM)結構表面電漿模態 ........................................... 32 4.3 週期結構的表面電漿模態 .................................................................... 37 4.4 磁場操控電漿-介電質波導陣列之布洛赫振盪 ......................................... 47 第五章 結論 ................................................................................................. 51 參考資料 ..................................................................................................... 52

    [1] 邱國斌、蔡定平,“金屬表面電漿簡介”,物理雙月刊2期28卷, p. 472, (2006).
    [2] 吳民耀、劉威志,“表面電漿子理論與模擬”,物理雙月刊2期28卷, p. 486, (2006).
    [3] Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion Volume 1: Plasma Physics, 2nd ed..
    [4] 葛德彪, 閻玉波,“電磁波時域有限差分方法”,西安電子科技大學出版社, (2005).
    [5] VORPAL: http://www.txcorp.com/products/VORPAL/index.php
    [6] David N. Smithe, “Finite-difference time-domain simulation of fusion plasmas at radiofrequency time scales,” Physics of Plasmas, Vol. 14, Issue 5, pp. 056104-056104-7, (2007).
    [7] T. H. Stix, “Wave in Plasmas,” AIP, New York, (1992).
    [8] 李定, 陳銀華, 馬錦秀, 楊維紘, “等離子體物理學”,高等教育出版社, (2006).
    [9] G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett., vol. 8, pp. 386-388, (1983).
    [10] M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36, 5960–5967, (1987).
    [11] J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, ” Theory of Surface Magnetoplasmons in Semiconductors,” Phys. Rev. Lett., vol. 28, pp. 1455-1458, (1972).
    [12] A. Yariv and P. Yeh, Photonics,” Optical Electronics in Modern Communications,” Oxford University Press, New York, NY, 2006, 6th ed..
    [13] S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Photon. Rev. 3, 243-261, (2009).
    [14] G. Nenciu, “Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians,” Rev. Mod. Phys. 63, 91-127, (1991).
    [15] A. R. Davoyan et al., “Plasmonic Bloch oscillations in chirped metal-dielectric structures,” Appl. Phys. Lett. 94, 161105, (2009).
    [16] W. Lin et al., “Spatial Bloch oscillations of plasmons in nanoscale metal waveguide arrays,” Appl. Phys. Lett. 91, 243113 , (2007).

    下載圖示 校內:2013-07-19公開
    校外:2014-07-19公開
    QR CODE